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Submission-specific material

0 Submission Specific Material

0.1 Submission Introduction

The SMIF submission team is pleased to present a revised submission to the “Semantic Modeling for Information Feder-
ation” Request for Proposal ad/2011-12-10

The IPR mode for this submission is Non-Assert.

Clause 0 of this document contains information specific to the OMG submission process and is not part of the proposed 
specification.  The proposed specification starts with Clause 1. All clauses are normative unless otherwise specified.  

0.2 Submission Team

0.2.1 Submitters

The following companies submitted this specification:
 Data Access Technologies, Inc. (Model Driven Solutions Division)

 Cory Casanave
 No Magic, Inc.

 Jim Logan
 PNA-Group, Ltd.

 Sjir Nijssen
 88 Solutions

 Manfred Koethe
 Thematix Partners LLC

 Elisa Kendall

0.2.2 Contributors & Supporters
Contributors

 Tibco Software Inc.

o Paul Brown

0.3 Proof of concept
No Magic has a released product implementing most of the SMIF profile and OWL mapping. Prototype efforts for 
mapping are expected but have not yet fully validated the model and mappings.

0.3.1 Resolution of Mandatory requirements
6.5.1.1 Proposals shall define the SMIF Conceptual Model as a 
model of the concepts required to model information and achieve 
federation using SMIF. This model shall be a conceptual domain 
model of SMIF itself, expressed in the SMIF Notation (see re-
quirement 6.5.2.2).

The conceptual models are specified in clause Error: Reference 
source not found using UML/SMIF notation expressed using the 
SMIF conceptual modeling profile.
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6.5.1.2 The SMIF Conceptual Model shall define the concepts 
necessary for creating conceptual domain models (CDMs), suffi-
ciently general to express the semantics being represented by the 
information modeling constructs in the languages identified in re-
quirement 6.5.3.1, including the following capabilities:

Due to the similarity of needs, the SMIF model is one language 
that may be used for different levels of abstraction. The level of 
abstraction and purpose of a specific model is specified.

a. General capabilities for modeling all relevant as-
pects (i.e., all rules, laws, etc.) of concepts, in-
cluding (but not necessarily limited to) the defi-
nition of: individual things, relationships, classi-
fication of individual things (including multiple 
classification), sub-classification and inheritance 
(including multiple inheritance),  roles (that de-
scribe how individual things are involved in var-
ious processes, compositions and relationships), 
composition and constraints.

Capabilities relevant to information federation are included. 
Modeling of “all rules and laws” is considered out of our infor-
mation federation scope, but follow-on efforts could address ad-
ditional concerns. Concepts applicable to rules and laws may be 
modeled like any other concept.

All the following are included:

 Individuals

 Relationships

 Classification (of anything)

 Multiple classification

 Sub-classification (Generalization), including multiple 
inheritance.

 Roles

 Constraints

Specific models of compositions as patterns are intended to be 
included in SMIF models.

b. Definition of one or more names by which users 
refer to a concept, as well as one or more sepa-
rate reference identifiers that would normally be 
hidden from users. (This is required to maintain 
the stability of concept references across multi-
ple languages, communities and viewpoints.)

Concepts may have any number of names and identifiers. Names 
and identifiers may be scoped by a context.

c. Definition of the  context of concepts,  allowing 
for the grouping of concepts such that no single 
dominant decomposition is required (that is,  in 
addition  to  just  a  hierarchical  grouping,  allow 
for  a  multi-dimensional  separation of  concerns 
[Ossher1999] delineated by multiple contexts).

Context is a first-class SMIF concept that relates a set of things 
to applicable assertions that hold for them. Something may be in 
any number of context across multiple contextual dimensions.

d. Definition of patterns of reusable, parameterized 
conceptual  structures  and the use of such  pat-
terns within a context.

Patterns are a first-class concept.

e. Definition  of  units that  describe  what  can  be 
measured  about  various  conceptual  quantities 
and asserting that  some conceptual  quantity is 
measured in specific units.

Units are represented using unit types bound to quantity kinds.

f. Ability for federated definition of concepts; that 
is, allowance for the definition of a concept in a 
CDM such  that  it  can  be  modified  and/or  ex-
tended across multiple contexts and models.

SMIF uses an open world assumption that may be closed in a 
specific context. As such definitions may be federated and ex-
tended.
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6.5.1.3 The SMIF Conceptual Model shall define the concepts 
necessary for creating logical information models (LIMs), capable 
of  representing information  context,  information  structures,  in-
tegrity rules,  derivation rules, views and viewpoints as may be 
found in the languages referenced in requirement 6.5.3.1, but not 
be  bound to  any particular  data  representation  or  schema lan-
guage, including the following capabilities:

Due to the similarity of needs, the SMIF model is one language 
that may be used for different levels of abstraction. The level of 
abstraction and purpose of a specific model is specified.

a. Usage of one or more terms and/or concepts de-
fined in a CDM, as identified by MBRs between 
a LIM and the CDM, to define the semantics of 
information elements in one or more LIMs.

A CDM concept may be represented by any number of LIM con-
cepts.

b. Identification of concepts from a CDM (“what 
can be known about a subject domain”) as being 
required  or  optional  in  a  LIM (“what  may or 
must  be  included  in  a  particular  information 
structure”), with appropriate cardinalities.

A CDM specifies the semantics of the domain, not the data. Data 
cardinalities may be different from real-world cardinalities. What 
we can know, must know and do know may be independent. This 
is accomplished by using the “represents” relation and mappings.

c. Ability for  different  LIMs  related  to  the  same 
CDM to represent different (and possibly incom-
patible) subsets of information about conceptu-
ally the same things (as semantic precision does 
not imply universal agreement).

See response to (b).

d. Ability for  a  LIM to  close the  definition  of  a 
concept that has a federated definition in the re-
lated CDM, fixing it relative to a specific context 
in the CDM relevant to the LIM. (Once a defini-
tion is closed, it can then be assumed that no fur-
ther statements will be made about that concept 
within the context relevant to a particular LIM 
thus allowing for the application of defaults and 
constraints impacting that concept.)

SMIF rules operate on a closed set of models based on their con-
text whereas the models may be extended or refined in other con-
texts. Context is the foundation for closing the world.

e. Ability to  define  viewpoints that  specify  views 
on a CDM or LIM that act as effective contexts 
for a particular purpose relevant to one or more 
other LIMs, including formation of views from 
composite concepts.

Each LIM is effectively a viewpoint that is mapped to the under-
lying CDM using MBRs. See Error: Reference source not found.

6.5.1.4 The SMIF Conceptual Model shall define the concepts 
necessary for  creating model  bridging relations  (MBRs),  suffi-
cient  to  enable  independently  conceived  models  at  all  levels 
(CDM, LIM, PDS) to be federated, such that the similarities and 
differences between elements defined in each can be expressed, 
including the following capabilities:

Due to the similarity of needs, the SMIF model is one language 
that may be used for different levels of abstraction. The level of 
abstraction and purpose of a specific model is specified.

a. Ability to  relate  identical  and similar  informa-
tion concepts that have been independently con-
ceived  and  represented  in  information  models 
using the same or different information modeling 
languages or physical schema.

Identical and similar concepts are mapped using representation 
and mapping rules. The mapped models may or may not be inde-
pendently conceived.

b. Ability to handle differences in name, structure, 
representation, property sets and underlying se-
mantic theories. 

Mapping rules provide for differences in naming and structure. 
Mapping rules may be defined between compatible semantic the-
ories. SMIF
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c. Ability  to  relate  the  same  information  across 
views that  share the same underlying concepts 
and to specify one view of a model from another 
(projection).

See the response (b).

d. Ability to state the  purpose for an information 
structure  in  one  model  relative  to  the  related 
structure  in  another  model.  (Examples  of  pur-
poses  include  creating,  reading,  updating  and 
deleting  recorded  information  and  providing  a 
snapshot in time, measurement,  expected value 
or required value of a property of or association 
between information records.)

The purpose of a mapping may be specified in the textual docu-
mentation of a mapping; no other support is deemed necessary.

6.5.1.5 Proposals shall define a Kernel as a subset of the SMIF 
Conceptual  Model  with the minimum set  of  foundational  con-
cepts  necessary in  order  to  precisely define  all  other  concepts 
within the SMIF Conceptual  Model.  Proposals  shall  provide a 
formal logic interpretation of the semantics of the SMIF Kernel,  
expressed in a formal logic such as Common Logic as defined in 
ISO standard 24707.

The kernel is defined as a subset of the SMIF model expressed in 
the diagrams under the package “Kernel”.

The kernel is defined as a mapping to the fUML subset of UML, 
which provides a formal logical interpretation of the semantics in 
Common Logic. As the kernel is also specified in UML, no spe-
cific mapping is required.

Like MOF, fUML does not comprehend SMIF subsets and rede-
fines restrictions, as such these restrictions are not enforced by 
the fUML kernel.

6.5.2.1 Proposals shall define a SMIF Metamodel as a MOF or 
SMOF model of the abstract syntax of a modeling notation suffi-
cient for completely defining any conceptual data model (CDM), 
logical  information  models  (LIM)  or  model  bridging  relation 
(MBR).

A MOF meta model of SMIF is included. It is directly derived 
from the SMIF conceptual model by removing SMIF extensions 
not valid in MOF. MOF does not comprehend SMIF subsets and 
redefines restrictions. As such, these restrictions are removed in 
the MOF model and must be enforced by other means. They re-
main restrictions on the model structure.

6.5.2.2 Proposals  shall  define at  least  one graphical  concrete 
and at least one textual concrete syntax for the SMIF Metamodel. 
The graphical notations shall be specified using the OMG dia-
gram definition standard based on the abstract syntax.

The SMIF graphical notation included leverages UML and the 
SMIF profile for UML. 

While various “fact modeling” textual notations have been evalu-
ated in creating SMIF, no text notation is included at this time.

It is anticipated that other notations will be defined for the SMIF 
model in later efforts.

6.5.2.3 To the greatest extent practical, the SMIF Metamodel 
and notations shall be based on reuse or adaptation of existing 
modeling and logic languages. Proposals shall provide justifica-
tion when this is not considered to be the best solution.

The SMIF graphical notation utilizes UML . In keeping with the 
philosophy of SMIF, the relationship to other models is ex-
pressed as mappings.

6.5.2.4 The content of models expressed using the SMIF Meta-
model shall be Web addressable resources, each having a unique 
Web identity in support of Linked Open Data.

As a MOF meta model SMIF models are web addressable. The 
OWL/RDF mapping of SMIF also produces web addressable 
model content.

6.5.2.5 Proposals shall provide an MBR model bridging from 
the SMIF Conceptual Model to the SMIF Metamodel, specifying 
how CDMs, LIMs and MBRs based on concepts defined in the 
SMIF  Conceptual  Model  may be  represented  using  the  SMIF 
Metamodel and so expressed in SMIF notations. Conversely, all 
statements made as part of any model represented using the SMIF 
Metamodel shall have a precise and well-defined semantic map-
ping to the SMIF Conceptual Model.

The SMIF meta model is a minor transformation from the SMIF 
conceptual model using the same semantics, terms, constructs 
and model identity. For this reason, no mapping was deemed nec-
essary.
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Proposals shall define normative MBR models, in the SMIF Lan-
guage, that bridge the SMIF Conceptual Model to metamodels for 
the following existing languages, in order support the federation 
of information defined in these languages.

a. Entity-relationship (ER) modeling, with a meta-
model such as that proposed for IMM

b. SQL Data Definition  Language  (DDL),  with  a 
metamodel such as that proposed for IMM

c. XML schema definitions (XSDs), with a meta-
model such as that proposed for IMM

d. Unified Modeling Language (UML)

e. Semantics  of  Business  Vocabularies  and  Rules 
(SBVR)

f. OWL web  ontology  language,  with  the  meta-
model as given in ODM

g. RDF Schema (RDF/S),  with the metamodel  as 
given in ODM

Mappings are specified for UML and OWL. Additional mappings 
may be included as user demand indicates. Experience indicates 
that mappings should be independent of the foundation specifica-
tion such that they can be developed and maintained indepen-
dently. This helps to avoid monolithic specifications.

6.5.3.2 Proposals shall provide a minimum of four non-norma-
tive examples drawn from different domains, demonstrating the 
overall applicability of the proposed SMIF Language to the defi-
nition, extension, validation, federation and integration of infor-
mation models and their physical schema representations.

Extensive examples are provided in OMG submissions based on 
SMIF. These include “threat/risk” (OMG document SYSA/2016-
0-02 ) and draft versions of FIBO. Other multiple other small ex-
amples are included in this document.

Numerous examples are provided in this specification.

0.3.2 Non-mandatory features
6.6.1 Proposals may provide a direct mapping from the SMIF 
Metamodel to RDF, RDF/S and/or OWL, as an exchange format 
beyond that provided by XMI based on the SMIF Metamodel ab-
stract syntax.

A mapping to OWL-2 is included.

6.6.2 UML Profile for SMIF

6.6.2.1 Proposals may define a profile of UML that represents 
all or part of SMIF using UML stereotypes, tagged values and 
OCL constraints. 

6.6.2.2 If a UML Profile is included, an MBR shall be defined 
between the profile and the SMIF Metamodel. 

6.6.2.3 If a UML Profile is included, proposals shall describe 
the fidelity of the profile and any information loss between the 
profile and corresponding models expressed in SMIF notation.

A UML profile for SMIF (at all levels) is included and defines 
the graphical syntax for SMIF. Other notations may be added in 
the future.

0.4 Resolution of Discussion Issues
References to and naming of individuals. All SMIF entities may have multiple names and identi-

fiers. This includes individuals as well as types and 
metadata. Each term is a first-class entity that may be 
defined in a context independent of the original defini-
tion. Context may also be used to cope human lan-
guages.

SMIF
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1 Scope

1.1 Business Need

Our ability to share, manage, analyze, communicate and act upon information is at the foundation of the modern 
enterprise and open, collaborative government. Information sharing is essential for an integrated approach to enterprise 
supply chains, fighting terrorism, business and government intelligence, inter-organizational collaboration and 
integrating enterprise applications. Yet, this essential capability has remained difficult and expensive to achieve in 
information systems which are frequently isolated, stove piped, and difficult to integrate. The inability of our systems to 
share information hampers the ability of our organizations to collaborate and for our processes, services, and 
information resources to work together. Much of our information technology budgets are consumed by attempts to 
overcome this “semantic friction” in our systems and organizations are currently spending more on application 
integration than on building new applications [Gartner2011]. The overall human and financial cost to society from our 
failure to share and reuse information is many times the cost of the systems’ operation and maintenance. 

In general, information sharing can be understood at a number of different levels. 

 Infrastructure is the technology used to maintain data and move it from one place to another. 

 Format is the way data are structured, its syntax.

 Semantics deals with how data is interpreted as meaningful information. For an information system, this interpreta-

tion is reflected in how the data is processed in order to carry out the business purpose of the system.

We are effective at dealing with data infrastructures today, and we are somewhat effective at handling multiple data 
formats, albeit via manual and point-to-point integrations. However, we are not very good at understanding how the 
semantics of data in independent data sources are related. Too often, how each system interprets shared data is implicit 
in the specific design and operation of the systems. Differences in structure, terminology, viewpoint, and notations make 
system-specific data structures hard to integrate, negatively impacting the capability to federate these systems or the 
information they contain.

Full semantic integration requires information systems to all properly and consistently interpret the data exchanged 
among the systems. This, in turn, requires that there be an explicit understanding of what the desired semantic 
interpretation is at a business level. A semantic model can be used to express this understanding in a way that can be 
validated by the business stakeholders of the systems being integrated. And, given a computational underpinning for 
such a model, it can then also be used for supporting analyses and deductions necessary to carry out the necessary 
integration.

Unfortunately, for most existing information systems, the desired semantics have not been effectively modeled. The 
following are some scenarios in which semantic integration is, nevertheless, critical. Diverse and disparate efforts are 
currently being made to address these scenarios, examples of which are included with the scenario descriptions below. 
But, as of today, there is no consistent way to address modeling for semantic integration in general across all these areas.

 Data integration between business systems. Many large businesses have a critical need to better integrate sys-
tems in support of complex products. Not only may their business area have suffered financial distress, but 
there may be a need for new government reporting or new analytics and integration due to acquisitions. Such 
organizations  typically  have  multiple  layers  of  existing  data  bases,  middleware  specifications  and  XML 
schemas for use in web services, event brokers, etc. Most, if not all, of the existing systems and technologies 
still need to be supported. There may be dozens or even hundreds of enterprise systems involved and hundreds  
or thousands of small applications and spreadsheets. 

Example. A common approach chosen for integrating major business systems is to create a “canonical model” 
of the data within a domain and then map data into and out of that model using data mapping tools. 
Unfortunately, while there are various proprietary tools to support such an effort, there is no widely available 
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standard-based tooling for the job. For instance, while UML can be and is used for the modeling part of the job, 
a general modeling notation such as UML is not for the conceptual level of modeling required, and there is 
currently no standard profile to adapt it to the task nor for mapping data into and out of a canonical model in 
general. (The Model Driven Message Interoperability specification provides some support for the latter, but 
only limited to message format transformation for the financial services domain.)

 Data federation across multi-disciplinary teams. Developing complex systems often involves many parties who 

are widely distributed in location and time. Such development therefore requires efficient and effective infor-

mation exchange during the complete development and operations lifecycle of the system. This can only be 

achieved by realizing semantic integration between all involved parties. 

Example. The European Cooperation for Space Standardization (ECSS)1 addresses this issue by introducing the 
concept of a global conceptual model. This model is used in the implementation of “space system data 
repositories” as federations of physical databases. These databases are geographically dispersed and change 
over time but are logically integrated in an interoperable architecture, so that data can be exchanged effectively 
and reliably. Such data repositories need to be stable over a long period of time, so modeling must be at the 
semantic level independent of technology and tools. This modeling allows for upgrading the implementation 
technology without changing the model and data itself. The primary aim of this is to substantially reduce the 
system development and operation costs while achieving greater precision and federation.

 Information federation across an industry. Major industries, such as finance and telecommunications, need to 

deal with the representation of information relative to multiple contexts, taking into account different business 

processes, specific modeling goals and needs, visualization and implementation requirements or the existence 

of overlapping modeling domains. These differing contexts and conditions may require emphasizing different 

aspects and characteristics of essentially the same information. The representation of a concept in one view may 

be different from the representation of the same concept in another view as the context-specific details that are  

relevant differ from view to view. Information can be described using different yet compatible paradigms (e.g., 

domain-specific languages vs. UML and profiles) yet the meaning and semantics of the information should stay 

the same regardless of the format and viewpoint. This, again, highlights the need to focus on a common core 

model of shared semantic concepts. 

Examples. Some examples of efforts to deal with industry-level information federation are the Shared 
Information and Data (SID) Model, developed by the TM Forum [TMForum], the Common Information Model 
(CIM) developed by the Distributed Management Task Force [DMTF] and the Reference Information Model 
(RIM)developed by Health Level Seven [HL7].

 Information sharing and federation of threat and risk information, Threats and risks are increasingly multi-di-

mensional in nature – spanning physical space and cyber space. Threat actors understand and exploit our stove 

piped approach to sharing and analyzing information which leads to ineffective collaboration and mediation. 

Only by federating information across multiple domains such as cyber, physical, critical infrastructure, crimi-

nal,  intelligence and defense,  irrespective of technical  and political  boundaries,  can we effectively counter 

multi-dimensional intentional threats, natural events and system failures.

Examples. Attacks on our critical infrastructure have and will combine cyber attacks with physical attacks. This 

has been seen in exploits of our electric power grid where physical weaknesses are combined with Cyber to 

harm our physical infrastructure. By combining Cyber, criminal and terrorist information we will be better able 

to deal with these critical threats.

1 ECSS is an initiative established to develop a coherent, single set of user-friendly standards for use in all European space 
activities [ECSS].
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 Data federation across government organizations. Information sharing has been recognized by governments as 

a key enabler for purposes as diverse as fighting terrorism to financial transactions. There has been some 

progress in standardizing exchange schemas, which is a big step ahead of no standards at all, but the need exists 

to ensure that there is no ambiguity in the semantics of the exchanged data in order to safely enable the reuse of  

that data. In addition, any such standard must accept that there are and will be other such standards and that  

these also need to be federated.

Example. The U.S. Information Sharing Environment (ISE) “provides analysts, operators, and investigators 
with integrated and synthesized terrorism, weapons of mass destruction, and homeland security information 
needed to enhance national security and help keep our people safe” [ISE]. ISE depends on fixed schemas for 
information sharing, i.e., the National Information Exchange Model (NIEM) and the Universal Core (UCORE). 
These schemas provide XML Schema definitions that are claimed to be sufficiently common and universally 
understood by relevant stakeholders regardless of the IT systems being used within their intended domains. 
Even within NIEM, though, hundreds of overlapping schemas have been defined.

 Model federation across different modeling metamodels. The OMG itself has multiple standards related to 

modeling. These standards were originally created independently, resulting in difficulties when users try to use 

them together to share information embodied in models using the different standards. A conceptual domain 

model, distilled from the existing OMG modeling standards, would facilitate their comparison, acknowledging 

the commonality (or lack thereof) between the different concepts and definitions and bridging those concepts.

Example. OMG specifications related to just process modeling include BPMN, UML Activities, BPDM, and 
SPEM. A case in point in the difficulty this has caused relates to the UML Profile for DODAF and MoDAF 
(UPDM), a wide ranging profile supporting US Department of Defense (DOD) and UK Ministry of Defence 
(MOD) architecture frameworks. The UPDM community wishes, for example, to be able to use BPMN process 
models in the context of their UML Profile. A stopgap tactic has been to define an additional UML Profile for 
BPMN, which allows BPMN-looking diagrams to be drawn in UML, but it is clear this is not a strategic 
approach.  A better approach would be to create a “process modeling” conceptual domain model that would 
then permit model bridging relations between BPMN, UML, BPDM and SPEM models, allowing sharing 
across users’ process models

 Schema Evolution. As information systems evolve to support changing enterprise needs, the datasets they use 

need to evolve as well. While some changes are additive and readily accommodated, others involve factoring 

and evolving concepts. At their core, such changes require the evolution of the dataset schema underlying the 

system and the migration of the data from the old to new schemas. Such changes also impact the logic that in-

teracts with the dataset and every external interface and related data structure. While there is some tooling 

available for schema migration, there is little available to aid in the evolution of the logic and external inter -

faces. The absence of semantic understanding of the relationship between the schema and external interface 

data structures makes tooling to aid in the evolution problematic.

Example. It is common for an enterprise to represent the concept of customer as a composite of information 
about the person and the role that person plays with respect to the enterprise. Evolving needs, including 
regulatory requirements, require many enterprises to now factor this concept so that they can represent that the 
same person may play other roles as well, such as employee. Such semantic understanding is required to 
enforce constraints such as a prohibition against the same individual playing both the customer and employee 
role in a transaction. The absence of semantics-based tooling makes such changes labor intensive and error 
prone.

Current standards for information and data modeling may be effective at defining a particular data model for a particular 
application using a particular technology to solve a particular problem. But, as highlighted by the above examples, the 
methodology for using these standards at a higher level of abstraction – namely for cross-domain and cross-
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organizational semantic modeling – is not as well or as widely understood. As a consequence, the models available 
within a given organizational context are often not well suited to use across multiple dimensions or technologies, and so 
poorly support the needs for sharing and federation.

1.1 Scope

1.1.1 Semantic federation and integration

A semantic information federation approach is the one leveraged in this specification. A semantic approach focuses on 
concepts and their meaning, not how they are represented in any particular schema, syntax, vocabulary, or technology. 
Mappings then define how various data formats and vocabularies represent those concepts. Concepts are well defined in 
a conceptual reference model – a more precise way to define a vocabulary or taxonomy. Conceptual reference models 
may be called “ontologies”, or “abstract data models”  but some ontologies or abstract data models are essentially 
programs and not conceptual. 

The essential difference between a conceptual reference model and a concrete application model is that it describes real 
world things and their relationships as understood by stakeholders. It is a model of the world2, not a model of data or a 
system. When we have a concept like “Incident” in our model, “instances” of incidents are real things that happen – not 
a Java object or stream of XML. However, we may also have concepts of actual things, such as a specific incident.

• A conceptual reference model is conceptual in that it is an expression and formalization of how a community 
conceives of their domain, problem area, business or environment. It is not a model of the solution or a 
technology. This could also be called a “conceptual domain reference model”.

• A conceptual reference model is a reference model in that it is intended to supply reference concepts for what 
information in various systems means, to “connect the dots” between application or data models. It is not 
intended as a concrete application or solution model in and of itself. 

These real-world reference concepts are the pivot points between different ways to name, describe or talk about the 
things we deal with every day. This “world of things” is what we understand – of course there can be many names for 
and descriptions of the same thing. 

How do we know it’s the same thing? In some cases we can describe something so precisely and mathematically that we 
can be sure, in many cases it is just a shared concept based on a definition and how that concept relates to other 
concepts. We allow for both precise and pragmatic definition of things.

In real-world scenarios such as finance and risk risk management we also have to be fully aware of how much we trust 
various information sources. It is common, if not the general rule, that different information sources will have conflicting 
information about the same things. How do we know what to trust? This specification provides the basis for trust, in 
capturing the provenance of information, but it leaves the evaluation of trust to the capabilities that utilize or analyze the 
information – or to the stakeholders who must make decisions based on it. This is a common pattern in this approach, 
providing the basis for decisions but not the specifics for how to make those choices.

A conceptual reference model has some similarities to a canonical data format in that it attempts to capture cross-
stakeholder information needs – but it abstracts above the data format, technology, terminology and even the specific use 
case and structure for that information.

2 Or more generally, real or possible worlds. 
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1.1.2 Expressing conceptual reference models

As stated in 7.4.3, conceptual reference models are models of the world – or at least how communities conceive of the 
world. This is differentiated from models of data (e.g., an E/R model or XML Schema) or models of software (e.g., a 
Java program). In their pure definition, Ontologies3 are conceptual models, however not all ontologies or ontologies are 
conceptual and many are intended for building semantic applications using specific “reasoning engines”, not as 
reference models. Ontology languages are typically optimized and restricted for their intended class of reasoning engine, 
not to capture domain concepts in general. 

Of course, human natural languages are the most common way to express concepts.  Natural language is used in the 
definition of our concepts but those definitions are augmented with more formal assertions.

There can be confusion between the language used to express a model and what it models. For example, while Entity-
Relational (E/R) was designed for SQL data models it can be used conceptually. At the other end of the spectrum many 
ontology languages have been used to express data models or to support specific forms of inference based computation. 
The language does not make a model conceptual (or an ontology or a data model), what is being modeled does. Of 
course some languages are better than others for conceptual reference modeling and mapping than others, [SMIF] is 
used because it is designed for expressing conceptual reference models and mappings to various forms of data.

Our goal in this specification is to utilize a set of conceptual reference models as the pivot point between different data 
models and syntaxes for expressing information about real-world threats and risks. While using a conceptual reference 
model in this way is not new, there has not been a well-accepted standard for doing so. None of the well accepted 
modeling languages are specifically designed for conceptual reference modeling and mapping – most are designed for 
software modeling (data, procedural computation, or inference).

The Unified Modeling Language (UML) was originally designed for modeling object-oriented software, but is also used 
for other purposes and is easily extended with profiles. We are using a profile of UML based on Semantic Modeling for 
Information Federation (SMIF). UML is a well-accepted modeling language with widely available resources – SMIF 
provides a standard way to use UML for the purpose of conceptual reference modeling and mapping. The combination 
of UML and the SMIF profile provides an expressive, and automatable way to express the conceptual reference models 
and mappings. Any standard conformant UML tool can import and manage the profile and the conceptual reference 
model but special tooling is required to automate mappings.

The intent of the conceptual reference model and mappings is that a tool or infrastructure developer can take that model 
and interpret it and transform it as appropriate for their own technology stack and data formats. They may then use that 
technology stack to implement the information sharing and federation capabilities described conceptually. However, this  
specification makes no assumption about what that implementing technology stack may be or how it is implemented. In 
addition, this specification makes no assumption about a new “intermediate data format” based on the conceptual 
reference model- the conceptual reference model has no normative data format – it maps to multiple possible data 
formats that already exist. Keeping the “middle” conceptual and virtual is a way to help resolve the “data format wars” 
that plague many attempts to federate where yet another data format may be unwelcome.

Mapped data formats must, of course, be used in any implementation – ultimately you need an explicit data (or 
language) syntax to communicate and process data. Each of the mapped data formats such as STIX or NIEM may be 
used to express threat & risk data within their domains. There is also growing interest in the “Semantic Web4  ” which 
uses the “Resource Description Framework Schema” (RDFS) language as well as the “Web Ontology Language” 

3Ontology: 1 : a branch of metaphysics concerned with the nature and relations of being. 2 : a particular theory about the 
nature of being or the kinds of things that have existence.[ www.merriam-webster.com]. However, ontologies have 
become associated with a particular branch of formal languages such as OWL and Common Logic that support logical 
inference.

4The term “Semantic Web” refers to W3C’s vision of the Web of linked data. Semantic Web technologies enable people 
to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data are empowered by 
technologies such as RDF, SPARQL, OWL, and SKOS. [http://www.w3.org/standards/semanticweb/]
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(OWL) or the Simple Knowledge Organization System (SKOS) to describe the web of data on the internet. The 
semantic web technologies are well suited to data federation. The conceptual reference model can be mapped to 
semantic web technologies generated from the operational threat and risk (OTR) conceptual reference model, using the 
SMIF specification. Conceive 

1.1.3 Pivoting through conceptual reference models

 

Figure 5 Illustration of pivoting through a conceptual reference model

The illistration above shows how conceptual reference models provide the “pivot point” between different schema for 
various data sources. The conceptual reference model describes the world (or a possible world) as we conceve it. 
Schema describe data, that data is about the same “real world”. Where schema elements are mapped to the same 
concepts their data can also be mapped or federated. Any number of schema (or other data descriptions) can pivot 
through the same concepts and thus provide for mappings between any combination of data sources.

1.1.4 Mapping to information and data models

Conceptual reference models are not intended to define data schema for specific applications, but to define the semantics 
behind those schema by mapping them to concepts. Each data schema to be mapped is imported into a model and a 
“mapping model” defines how the data structures in a concrete schema represent the common reference concepts. Only 
those concepts that need be shared or federated with other data schema need be mapped. An implementation of this 
specification is then able to map between and federate information in these different schema.
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2 Conformance
The Conformance clause identifies which clauses of the specification are mandatory (or conditionally mandatory) and 
which are optional in order for an implementation to claim conformance to the specification.

Note:  For conditionally mandatory clauses, the conditions must, of course, be specified.

There are five distinct types of conformance. These are listed below. Unless otherwise stated these types of conformance 
are independent. 
1. Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface and/or 

API that enables instances of concrete SMIF metaclasses to be created, read, updated, and deleted. The tool must 
also provide a way to validate the well-formedness of models that corresponds to the constraints defined in the 
SMIF metamodel. Abstract syntax may be further refined as either:

a. Conceptual model conformance – corresponding to all elements not included in the packages “Rules” & 
“Mapping rules”.

b. Pattern abstract syntax conformance – corresponding all conceptual model packages.

2. UML Profile conformance. A tool demonstrating UML Profile conformance provides a user interface and/or API 
that enables instances of SMIF UML notation to be created, read, updated, and deleted. Note that a conforming tool 
may provide the ability to create, read, update and delete additional diagrams and notational elements that are not 
defined in SMIF.  UML Profile conformance may be further refined as either:

a. Conceptual Modeling Profile Conformance – All elements defined for the conceptual modeling profile, 
clause Error: Reference source not found

b. SMIF Rules profile conformance - All elements defined for the SMIF Rules profile, clause Error: 
Reference source not found.

3. Model interchange conformance. A tool demonstrating model interchange conformance can import and export 
conformant XMI for all valid SMIF models, including models with profiles defined and/or applied. Model 
interchange conformance implies abstract syntax conformance. A conforming SMIF tool shall be able to load and 
save XMI as a SMIF MOF meta model.

4. Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret SMIF 
semantics, e.g., data transformers, code generation, model execution, or semantic model analysis.

Where the SMIF specification provides options for a conforming tool, these are explicitly stated in the specification. In a 
number of other cases, certain aspects of the semantics are listed as "undefined" or “intentionally not specified” or “not 
specified”, allowing for domain- or application-specific customizations. Only customizations that do not contradict the 
provisions of this specification will be deemed to conform to it. However, models whose meaning is based on such 
customizations can only be interchanged without loss with tools that support the same or compatible customizations. 

This specification comprises this document together with XMI serialization contained in machine-consumable files as 
listed on the cover page. If there are any conflicts between this document and the machine-consumable files, the 
machine-consumable files take precedence.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of 
this specification. For dated references, subsequent amendments to, or revisions of, any of these do not apply. 
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List of normative references. (specific reference to be included)
[UML] OMG Unified Modeling Language (UML) v2.5

http://www.omg.org/spec/UML/2.5/
[MOF] OMG Specification ptc/2013-08-20, Meta Object Facility (MOF) Core, v2.5
[ODM] ODM Ontology Definition Metamodel, 2 September 2014. http://www.omg.org/spec/ODM/1.1/
[OWL-2] W3C/TR REC-owl2-syntax:2009 OWL 2 Web Ontology Language: Structural Specication and 

Functional-Style Syntax. W3C Recommendation, 27 October 2009. 
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

[NIEM] http://reference.niem.gov/
[WGS-84] http://earth-info.nga.mil/GandG/wgs84/
[JCGM 200:2008] http://www.iso.org/sites/JCGM/VIM/JCGM_200e_FILES/MAIN_JCGM_200e/01_e.html
[NIST-SI] http://physics.nist.gov/cuu/pdf/sp811.pdf
[NIST-800] http://csrc.nist.gov/publications/PubsSPs.html
[BFO] http://ifomis.uni-saarland.de/bfo/
[MathWorld] From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com
[CL] ISO Common Logic, ISO/IEC 24707:2007(E)
[ISO1087] Terminology work — Vocabulary, 2000, ISO 1087-1

[SOWA1999] John F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational 
Foundations, 1999, ISBN 0-534-94965-7 

The following normative documents contain provisions which, through reference in this text, constitute provisions of 
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not 
apply. 

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply. 

Terms defined in other sections

 See section Error: Reference source not found for definitions of:

o Conceptual Domain Model (CDM). 

o Logical Information Model (LIM).

o Physical Data Schema (PDS).

o Model Bridging Relation (MBR).

 All terms defined in the model, clause Error: Reference source not found, are defined in SMIF.

Other Terms

 Instance:  An “instance” designates something categorized by a type (including meta types). For example; 
“Fido is an instance of Dog” means that Fido <has type> Dog and that Dog <categorizes> Fido. Note: Instance 
does not imply (or prevent) any implementation or other restrictions such as “Factories” or “Single 
Classification” as do some programming languages.

 Fact: Facts are something that someone or something asserts to be true. The class of things that can be asserted 
are called “propositions” as they can be true or false. Once asserted to be true, these propositions are facts. Of 
course the relevance, trust or belief in facts is open to interpretation.
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 Concept: Everything we describe in a SMIF model is considered a concept. A concept is anything conceived. 
For something to be in a model there must be a conception of it. Concepts are inclusive of types, categories, 
values and individuals.

 Identity: That which makes something differentiated from something else. Identity is an abstraction that should 
not be confused with identifiers, which are symbols, adopted by convention, used to identify a particular thing 
having identity.
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1.5

5 SMIF Model Semantics
The following is a high-level description of the fundamental SMIF concepts.

The fundamental concepts will be described in a way that most practitioners can relate it to their familiar experiences. In 
this chapter we will gradually build a semantic-conceptual architecture (an architecture that is completely independent of 
any particular technology and in which there is a clear distinction between the world of the things and the world of the 
representations of those things). 

Note that this section amplifies the reference documentation in section 8. Section 8 should be consulted for specific 
concept definitions. The model is presented using the SMIF UML profile.

5.1       The SMIF Conceptual Model Foundation

The SMIF conceptual model serves three potential purposes:
• It defines the SMIF language
• It provides foundation concepts which other models may directly use, including domain models
• As a reference model to which other, independently conceived, models may be mapped (where there are 

concepts in common).

SMIF has been built with the expectation that by providing reference models that define common shared concepts we 
can either directly reuse those concepts or map them to related concepts in different models or data structures. This is 
the essence of federation.

Many of the concepts used to define the SMIF language may also be used as reference concepts for domain models. 
Many of the fundamental concepts needed for the SMIF language are also found in many domain models. Examples 
would be entities, identifiers, situations and values.  That said, there is no requirement that these concepts be used or 
referenced by SMIF domain models – the choice of what reference models to use is made by the domain architect, not 
by SMIF.

SMIF, as a language for modeling, needs to interoperate with and share concepts with other languages such as UML, 
OWL or XML-Schema. This is really the same problem as an application containing, for example,  company 
information it may need to share  with other applications providing or consuming company information. The basis for 
sharing information, at any level, is that there are different ways to represent information but parties must, ultimately, 
share meaning (concepts) for useful communication to take place. Communications takes place when you understand 
what another party has said based on some concept you share about the world, system or domain you are communicating 
about. If there are no shared concepts there can be no understanding or communication.

To understand what is said you must have some way to reference a concept you share. We reference a shared concept by 
using terms, or “signs”. Those signs can be textual or even gestures, like pointing at something. Natural language uses 
words or phrases as these signs. But, since words can have many or fuzzy meanings SMIF also references concepts with 
model based identifiers. These model based identifiers serve as signs to connect a more formalized definition of a 
concept, in a conceptual reference model,  with the various ways that concept may be used or expressed.

The following section identifies common concepts used by and defined within SMIF that may also be used in domain 
models as well.  The way concepts have been partitioned in SMIF to enable its use as a reference model across language 
concepts may serve models at many levels.  This approach to partitioning models may be useful in other domains as 
well. Of course, some of the SMIF concepts are more focused on language design and are less useful for typical 
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domains.

The SMIF model has already been used in this way, it is used and extended by the [ThreatRisk] conceptual model which 
is used in this section to provide examples.

5.1.1 Thing

In many models it is convenient to have a sign for anything that could possible be in any world view, any data repository 
or any model – the most general concept possible and therefor a “super-type” of everything else. We (and many others) 
call this concept “Thing”.  As a concept for anything, “thing” may be considered somewhat meaningless – but it is a 
convenient concept, and one that is very common in models and data structures. More interesting concepts will all be 
sub-types of “thing”.

Examples of things are “George Washington”, “The song – Rock of ages”, “Unicorns” and the number “5”. Other 
examples includes a DBMS record about George Washington or a recording of the “Rock of ages”. Note that things 
include “real world” things as well as made-up things and data about things we find in computers or filing cabinets 
(millennials may have to look up the concept “filing cabinet”).

Semantics

Everything that is in any world, domain, model or data structure is, directly or indirectly, an instance of “Thing”.

For all X, Thing(X)
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5.1.2 Type

A primary way we understand things is by categorizing them as types of things.  The concept of “Type” is common 
across most human and modeling languages. The concept of the type of a thing is also common in domain models, such 
as product types, malware types, kinds of financial instruments, or kinds of fish. A type <categorizes> a set of things of 
that type, all of these things <has type> of one or more types. The relationship between things and types is called the 
“Extent of Type”.

Things and how they are categorized as types is one of the primary conceptual mechanisms used in SMIF and most other 
languages – it is part of how we as humans understand the world. Also note that we expect things may have any number 
of types, and those types could even change over time or be different in various context – such a “multiple 
classification” assumption fits with the way our world works and is understood. The multiple classification assumption is 
different than most “object oriented” programming languages that restrict objects to a single type that can’t change.

Remember that we said everything is a “Thing”. Well,  types are things as well – we will see how this works later when 
we see the full hierarchy where Type is defined.

There is a somewhat theoretical discussion about types being defined by “intension” (what we think they mean) or 
“extension” (enumerating the set of things that are the extent of that type). Type, at this level, may be defined either way. 
Our norm is to define types by intension based on our observation of and understanding of the world we live in.

As an aside, a notation convention we use: that the primary things we are discussing are shaded where as other related 
things are not. Also note there are references, e.g. [FUML] to other standards with like concepts.
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Example 1

In this example we are saying “Fido” is a dog. In terms of the model, there is an “Extent of Type” relationship between 
“Fido” and the type “Dog” where “Dog” <categorizes> “Fido” and “Fido” <has type> dog. This relationship is one 
“fact” in our model that can be read either way, from dog to Fido or Fido to dog. 

We are also introducing the use of UML “Instance Diagrams” to illustrate our examples. 

We would probably never just use “Thing” to categorize “Fido”, we would categorize Fido as something more specific - 
“down the hierarchy” of types – here we see that Fido is a Dog and that Dog is a kind of animal. As a shortcut, we will 
usually not show the “Extent of Type” relationship in examples, we will just show the types of something after the name 
– as is provided for in UML instance diagrams. So the UML shorthand for writing out all the explicit relationships is:

We should understand that whenever we see an instance specification with a name followed by a colon (“:”) and a type, 
it means that  there is an Extent of Type relationship instance between the instance (i.e., “Fido”) and its type (i.e., 
“Dog”). There could be multiple types listed, separated by commas (e.g., “Fido : Dog, Pet”), which means that there is 
an Extent of Type relationship instance between the instance (i.e., “Fido”) and each of its types (i.e., “Dog” and “Pet”).

Semantics

For all things X, where X <has type> T, X shall conform to the propositions that hold within T.

The set Extent of Type(T) =  all things X, where X <has type> T

In logic, type may also be considered a function, which also implies: 

For all things X, X <has type> T, T(x)

Note: The constructs for determining the propositions that hold within T as well as the semantics of relationships are 
described below.
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5.1.3 Identifiable Entities and Values

We are presenting the concepts “Identifiable Entity” and “Value” together as they are best understood as complementing 
each other. Identifiable entities and values are, of course, both kinds of things – but of a very different nature. 
Identifiable Entities are what we mostly talk about – things we give names to, things that have some kind of independent 
“identity” - everything we can see & touch are identifiable like people, rocks and dogs. Intangibles can also be 
identifiable, such as purchases, threats or processes. Many, but not all, identifiable things have some kind of “lifetime” 
where that may change over that lifetime yet retain their individuality. 

Values, on the other hand, “just are”. One way this is explained is that values have no identity or lifetime other than the 
value itself – which can never change and is the same everywhere. All numbers are values, as are quantities like “5 
Meters” or “pure data” like the text string “abc”. The number “5” is the same number five everywhere (even if it has 
different representations) – it makes no sense to “delete” 5! The text string “abc” is indistinguishable from the text string 
“abc” in any other document or database. Values are typically used to describe characteristics of things, such as the 
weight of rock “R555” is 5 kilograms. Note that values may have different representations in our models and data, but 
they all represent the same underlying value.

In the SMIF foundation model we partition things as being values or identifiable entities. Something can’t be a value and 
identifiable entity – these classifications are “disjoint”.This partitioning, like most of our concepts, is found in many 
other languages and ontologies – both modeling languages and human languages. Domain models typically use the same 
kind of partitioning and may use or map to the SMIF concepts.

Examples
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Returning to Fido for a moment, Fido is clearly an “Identifiable Entity” with a lifetime. We use values, like quantities, to 
define characteristics of identifiable entities – like their weight. 

The above “Characteristic” for Fido, shown as the value of a UML property, states that the  weight of Fido is 3.2 KG – a 
nice lap dog. This is how values are typically used with identifiable entities (like dogs, people or computers). We will 
see in more detail how characteristics are represented in the SMIF model later. We will also see how we can understand 
how the weight of Fido may change over time (what we see above is just a “snapshot” of Fido, (perhaps when he was a 
puppy)).

The rule we use is that a Characteristic always has a values as its type–. This clearly distinguishes characteristics from 
relationships between identifiable entities. This is a recommended convention, but is not a SMIF constraint, to allow for 
various methodologies.

5.2 Identifiers

5.2.1 Basic Identifiers

Even in our simple examples we have been naming things – giving them “Signs”, like “Dog” and “Fido”. Most models 
and data structures have ways to name things. SMIF defines the basic concept of an “Identifier” that <identifies> some 
identifiable entity. There is an “Identification” relationship between an identifiable thing and what it is <identified by>. 
Note that something may be identified by any number of identifiers, or none at all. Please keep in mind: The “thing” 
that is identified is different from the values (signs) that identify it. A thing is also different from a data record that 
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Figure 5.6: Identifiable Entity with 

Value Characteristic

Figure 5.7: Basic Identifiers



provides information about it. Modelers need to be clear about what the elements in their model really represent – real 
world entities, data records or perhaps social conventions.

One of the design philosophies we have used in SMIF is that we should not “commit” to anything unless it is necessarily  
true for the concept we are defining – but when something is necessarily true, we should state it. In this case we don’t 
want to commit to an identifier being text (it could be a picture, gesture or a sound). We do want to commit to identifiers 
being a kind of value as identifiers should not change. In a sub-type of Identifiers we make a stronger commitment - 
“Text Identifier” which has a string value. Text identifier is a sub-type of “Identifier that makes a commitment to the 
value being a string and represents the more abstract Identifier concept.

Examples

Returning to Fido again; “Fido:Dog” is really a double shortcut. We are asserting two “facts”: that Fido is a dog (which 
we saw above) and that Fido has the identifier “Fido”. A full instance model would look like this:

Here we see that there is “some identifiable entity” that <has type> Dog and is <identified by> the text identifier “Fido” 
(noting that there could be other identifiers as well). Also note that the Identifier identifies the entity and that identifier 
has some value. The same value could be used in other identifiers – so at this level we are not saying anything about the 
identifier’s string value “Fido” being unique. 

Relating this to some DBMS, we could store a “Record” that represents Fido and has a column  representing  names. In 
thinking about the DBMS, we want to distinguish the “real Fido” from records about Fido. The Fido element above is 
intended as a sign for the real Fido – not data about Fido. Likewise, the “Dog” type is intended to represent “real dogs”, 
not dog records. Of course DBMS systems are real things also, but they contain data representing Fido – so we 
distinguish a model element representing the real things and real relationships between them from records (data) about 
those things. This separation of concerns is the foundation of information federation. We will explore this separation of 
concerns in more depth below.

There are also other types and relationships in SMIF to be able to distinguish names, like “Fido” from controlled 
identifiers, like a dog-tag number - we will see more about this next.

5.2.2 Unique and Preferred Identifiers

Fido may have many names and identifiers, such as his dog tag number and the ID of the “Chip” that can be used to find 
Fido if he is lost. The dog tag and chip ID are expected to be unique. His name, Fido, could be used for many dogs – it 
isn’t unique but it may be the name we would prefer to use when talking about him.

Since SMIF is intended to work with data from multiple sources that will identify the same things in different ways, it is 
important to be able to relate many forms of identifiers to the same entity. It is also important, where identifiers are 

Semantic Modeling for Information Federation (SMIF) 0.9 21

Figure 5.8: Fully expanded type and identifier instance model



unique, to be able to understand the scope of that uniqueness – there needs to be some authority or convention that 
makes them unique. This same “multiple identity” problem exists when any application is “fusing” data from multiple 
sources – so a foundation model for identifiers has broad applicability.

In figure 5.9 we have shown some additional concepts to handle uniqueness and preference.

Note the “Preferred Identification” relationship that specializes the “Identification” relationship we have already seen. 
Also note the “ends” of this relationship “subset” the corresponding ends of “Identification”. Relationships, as well as 
the ends of relationships, form a generalization hierarchy from more general to more specific (we don’t always show this 
hierarchy in summary diagrams). The “Preferred Identification” relationship specializes Identification, so that the <has 
preferred> identifier is the Identification that has the most intuitive meaning for the majority of people. Preference is 
merely intended to assist in human understanding. When we show something, we may not want to see all the identifiers, 
just the preferred one. Also note that an identifier preferred in one context (e.g., a domain, language, or vernacular) may 
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Figure 5.9: Unique Identifiers



not be preferred in another. Later we will see how context can be used to impact what relationships are valid in any 
particular circumstance.

The other concept we are introducing is that of uniqueness. For some identification value to be unique it really needs to 
be unique within something – some authority or convention that provides that uniqueness. So a “Unique Identifier” is 
<unique within> some “Namespace”. A namespace could be technical, like a block of code, or social and based on an 
authority like names of streets within a town, in which case the town defines the namespace. The “URL” (Universal 
Resource Locator) is a well known kind of unique identifier, based on an IETF standard: 3987. Providing uniqueness in 
this way is also a form of contextualization. We will explore context more below.
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Names and Terms

We complete our tour of identifiers by showing the complete identifiers package that includes “Name”, “Term” and the 
“Naming Relationship”. Names are identifiers intended to be meaningful to people – most often derived from natural 
language vocabulary or proper nouns. By typing an identifier as a name (of the concept) we expect that people will be 
able to relate the name to their intuitive understanding. Compare this with technical identifiers, which may be 
meaningless symbols. Combining the idea of a name with a unique identifier we get the concept of a “Term”. A term is a 
name that is unique within some namespace.

Considering these refinements of identifiers we may want to make our Fido example a bit more precise by defining 
“Fido” as a name and also including a unique identifier, like a Virginia dog tag number. 
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Figure 5.10: Full Identifiers Package



From this example we can see that Fido is an identifiable entity that <has type> Dog. Dogs can have any number of 
identifiers and that some may be unique within specific namespaces such as the “Virginia Dog Tag Agency”. We can also 
see that “Fido” is a human meaningful name that is the preferred identifier for Fido (in this context). Also note that the 
Entity Type “Dog” also has an identifier unique within some other namespace – in this case “Animal Model”.

As noted above – this model for identifiers is used by the SMIF language and may also be used by or mapped to domain 
reference models that deal with names and identifiers.
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Figure 5.11: Full Identifier Example



5.3 Temporal and Actual Entities
As noted above, identifiable entities can be anything other than values. Most of the things we deal with have some kind 
of lifetime – they exist in time. Some of these can be considered “actual entities, or “individuals”. The next layer in the 
SMIF model defines temporal entities and actual entities.

Temporal entity is primarily an abstract extension point in the SMIF model. It has no differentiating characteristics or 
relationships. Other specifications, such as the threat/risk model, augment Temporal Entity (and most of the other 
foundation concepts) with specific relationships derived from the OMG [DTV] specification. However, specifying that 
Actual Entity, Situation, and Time Interval are temporal assists in more precisely defining their semantics.

Actual entities are the individual things we deal with – they are not types , categories or sets; actual things. By actual we 
don’t mean necessarily physical, for example a “threat” may be consider an actual entity if it is an actual threat. A 
purchase may also be considered an actual entity. Actual also does not necessitate something happening “now”, it could 
be in the past, present, or possible future. Most of the “interesting” things will be subtypes of “Actual Entity” - like 
person, tree or a person’s running.

Other kinds of temporal entities are situations and time intervals. Situations are discussed below, Time Interval is an 
example of how SMIF concepts can be specialized in other specifications, Time Interval is defined in [ThreatRisk] and 
only shown here to complete the example.
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Figure 5.12: Temporal and Actual Entities



Examples

Figure 5.13 with types from [ThreatRisk] (except “Dog” -we made that up for these examples), show how a hierarchy of 
domain concepts in another reference model can specialize and augment “Actual Entity” and “Temporal Entity”. By 
using concepts in a reference model we get a lot for free. For example, all of these entities can have identifiers. We then 
add what is missing.Here we are showing just two of the relationships defined in [ThreatRisk] for Temporal Entity: 
Temporal Order and Overlaps in Time. These relationships then apply to all subtypes of Temporal Entity in any model 
using or mapping to Temporal Entity.

A frequent complaint that is heard: “but I don’t care about the sex of animals!”, we will never agree on the “right” set 
of characteristics and relationships for anything! This is one of the fundamental difference between a conceptual 
reference model and an application model;  you use what you need and ignore the rest – you only agree on what you 
need to agree on. Every concept in a reference model is its “own thing” that can be used or ignored in any other model. 
Since a concept can be mapped to other models that may say the same or related things using different names, different 
structures, or more or fewer relationships and attributes. The reference model is only there to “connect the dots” between 
concepts shared across different representations, applications or communities. If an application doesn’t need something, 
it is simply not mapped. If something is missing – augment the reference or add it in another reference model. Using 
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Figure ,5.13: Actual Thing Hierarchy Example



reference models and mappings frees applications from the tyranny of having to do it “their way” when integrating with 
external system while still providing for interoperability and collaboration.

Based on such a hierarchy and relationships we can start to model interesting facts, for example:

This example shows three instances of “actual entities”: Fido, Michelle Obama and IBM Corporation. It further shows 
that the lifetime of “Fido” was before “Michelle Obama” and that there is some overlap in the lifetimes of “Michelle 
Obama” and “IBM Corporation”. If anything concerning temporal relationships exists in some data repository, it can be 
mapped to concepts in [ThreatRisk], and/or any other reference model with similar concepts, like [FIBO]. Note that all 
the facts in this example would not need to come from the same source – we may have “mapped” data from multiple 
sources so as to be better able to “connect the dots” and reach new conclusions. Since these temporal relationships are 
based on the OMG date-time standard [DTV], that standard could be used to reason about temporal objects. 

We will delve into this in more detail later – but it is interesting to note that relationships are temporal objects as well. 
So it is possible to say when a relationship holds as well as the entities it holds between. This enables SMIF models to 
understand the different assumptions made about time or when something happened in various data models or 
ontologies. In formal terms, this enables SMIF models to be “4D” (where time is the 4th dimension) but also allows such 
time considerations to be implicit where they are not as interesting.
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Figure 5.14: Temporal Instance Example



5.4 Situations (Upper Level)
Another kind of temporal entity is situations. Where “actual entities” are individuals, situations are configurations of 
individuals over some time-span. As configurations of individuals we can consider situations from the “outside” or the 
“inside”. On the “outside” we just talk about the situation; the state of the reactor, the process of the hurricane 
developing, etc. 

On the inside we need to consider how to represent these configurations, this uses “context” and “propositions”. First we 
will consider situations from the outside, then on the inside.

What are actual situations? A particular terrorist entering a particular airport. A policeman who was at a concert. A 
particular rock falling, a particular cup full of water. Even relationships are actual situations – the actual situation of one 
thing being related to another, in some specific way, for some period of time, such as a particular cup holding water, or a 
particular person in a particular house. In the SMIF language, relationships and characteristic bindings are some of the 
primary kinds of actual situations. This allows relationships to be involved in other relationships, such as when they 
happened, why, where information came from, or who was involved.

Situations include both things happening (called events in this example) as well as static conditions (called states), such 
as a cup sitting on a desk.5 As they are not needed for the definition of the SMIF language Event and State are not 
defined directly in the SMIF model – we merely show these subtypes of Situation defined in [ThreatRisk] as examples.

Situations include all conditions and processes; actual as well as possible. Possible situations can be patterns. Patterns 
provide for possible situations with some variable aspect that can then match multiple actual situations.

It is expected that situations will be augmented in reference models, [ThreatRisk] augments situations with concepts like 
causation – an accident causing injury.

From the “outside”, situations look like any other entity so we will not introduce another example. We will introduce 
some other concepts prior to exploring situations from the “inside” - describing the configuration of things.

5 In [ThreatRisk], an instance of an Event or a State can also be an instance of either an Actual Situation or a Pattern. 
That provides the distinction of an event specification vs an event occurrence, as well as the distinction of a state 
specification vs a current state.
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Figure 5.15: Situations - Top Level



5.5 Kinds of Types (Metatypes)

5.5.1 SMIF Language Metatypes

We have covered some basic kinds of things: Values, Identifiable Entities & Situations. For these fundamental kinds 
there are specific “meta types” for each – subtypes of the abstract concept of a Type. These meta types provide a way to 
properly define other types.

For something to be represented in SMIF, it must ultimately be an instance of “Thing”. Every “Thing” is in turn an 
instance of the metatype called “Type”, or one of its specializations, which categorizes what kinds of thing it is. Every 
specialization of “Type” provides increasingly-precise descriptions to which the things it categorizes must conform. We 
call “Type” and its the specializations metatypes, and we call “Thing” and its specializations types. We use this naming 
scheme because SMIF can represent multiple levels of typing. For example, “Fido” is an example of a general concept 
called a “Dog”. This is the “natural” level of typing, and we do not usually append the word “Type” to those. “Fido” is 
an example of a “Dog”, not of a “Dog Type”.  A dog type may be something like “English Sheep Dog”.

Providing a metatype allows more expressability for the kinds of types in SMIF, and provides rules for defining kinds of 
types and rules about when and where each type can be used. The left side of Figure 5.16 shows the metatypes defined 
in SMIF for the  types called Identifiable Entity, Situation, and Value, shown on the right side. SMIF generally uses a 
pattern where there is one special instance of a metatype that is the supertype of all other instances of that metatype. For 
example, There is one special instance of Entity Type called “Identifiable Entity”. It would be the supertype of “Dog”, 
and “Dog” would be another instance of Entity Type. For another example, the class called Value (shown on the bottom 
right) is an instance of Value Type (shown on the bottom left). Every specialization of Value, such as “Mass” is also an 
instance of the metatype Value Type. 

Sometimes it is desirable to give these fundamental SMIF types distinctive styles and icons in UML. For this purpose, 
SMIF provides namesake stereotypes for each of these fundamental types in its UML profile. For example, a 
specialization of “Value” called “Mass” can have the stereotype «Value» applied to it to give that class a distinctive 
color and icon on UML diagrams. Applying such a namesake stereotype to a class implies it is both an instance of a 
metatype and a specialization of its namesake type, so creating the generalization arrow is unnecessary.
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Figure 5.16: Metatypes



Note that each specialization of Type further constrains the kind of thing that the metatype can <categorize>. For 
example, all Value Types categorize only Values. In addition, the metatypes are a required type of the type they 
categorize. For example, each instance of a Value must have at least one type that is a “Value Type”, possibly among 
other types.

Each of the SMIF concrete language metatypes has a corresponding stereotype in the UML profile.

Additional metatypes are defined in SMIF and will be introduced in the appropriate sections, below.

5.5.2 Full Meta-Type Hierarchy

The following shows the complete hierarchy of metatypes.

These additional metatypes are defined in SMIF and will be introduced in the appropriate sections, below. 

5.5.3 Domain Specific Metatypes

Kinds of types can be defined for domain specific needs as well as the language elements such as we have seen above. 
Domain models typically need to define types or categories of things. “Entity Type” can be specialized for this kind of 
domain specific need. 
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Figure 5.17: Metatypes



Example

The above example uses some SMIF features we have not yet reviewed, the profile documentation may be consulted as 
required.

Figure 5.18 defines a “Product Kind” as a subtype of “Entity Kind” - a domain specific metatype. Note that Product 
Kind redefines what it categorizes to be ab “Individual Product” (being a product is a role of an actual entity). We can 
now crate a relationship between a supplier and a product kind to represent that the suppler offers such a kind of product 
as a product line. Using existing concepts of typing and categorization in this way alleviates the need for domain models 
to “re invent” categorization mechanisms and provides for deeper semantics of what such categorization means.
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Figure 5.18: Domain Specific Metatype Example



5.6 Context and Propositions
Note that situations are subtypes of “Context” and “Proposition”. To understand the “inside” of situations these need 
some explanation. This section may be a bit of a challenge, but take time to understand it as these are essential concepts 
that form the foundation of semantics in SMIF. 

Propositions are anything to which a “truth value” can be assigned, even a probability of truth (probability is not defined 
within the SMIF language but can be added by augmentation in related reference models). Being able to be assigned a 
truth value does not make something true or even asserted. The assertion of a proposition is relative to a context it 
<holds within>.  

But, context of what? What set of things does the assertion apply to? A context <contextualizes> any number of things; 
within a context the things it <contextualizes> are bound by what the context <asserts>. Context is the link between 
propositions and those things the propositions apply to. The context becomes the interpretation of the proposition. Since 
a thing is <in context of> any number of context that then <asserts> some set of propositions the contextualized 
interpretation of any thing can be established. In summary, a context <asserts> propositions for the things it 
<contextualizes>.

“Negation” is a relationship that is the inverse of “Asserts”, it asserts that something  must NOT be true.
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Figure 5.19: Context and Propositions



Note that Situation is both a proposition (it is something that may or may not be true) and a context (it asserts some 
configuration of things, defined by other propositions). Later we will see how relationships, characteristics and 
ultimately “Property Bindings” bottom out this recursive loop.

Examples of context include a document (as it asserts statements within that document), a political authority such as a 
state or country, a query, a process or a condition. My Coffey cup on my desk is a situation, my weight at any particular 
time, the solar system, the SI system of units, the lifetime of George Washington, Etc.

Besides situations, propositions also include rules and “universal truths”, like 2 > 1. Rules can be natural (the conversion 
factor of weight to mass on the surface of the earth) or asserted by authority (no radar detectors can be used in Virginia). 
Note that certain conversion factors from weight to mass <holds within> the context of the surface of the earth, this is 
the context of those conversions.

We previously noted the “Extent of Type” relationship between a type and the things it categorizes. Type is a special 
form of Context and Extent of type is a specialized form of “Extent of Context”. Type is one way of asserting 
propositions on things, things <categorized> by that type are in context of that type.

Please see section 5.8 for examples of assertions negations in a context.
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5.7 Properties, Characteristics and Relationships

5.7.1 Property Abstraction

Many of our concepts deal with variant parts. The weight of something physical, the buyer and seller of a purchase, the 
cells of a DBMS record, the arguments of a function. We tend to call these properties, variables, arguments, or 
association ends or fields or parts. SMIF defines an abstraction that provides for these “thing with variant” situations; 
Property Types and Property Bindings. We will introduce the abstractions first and then the concrete uses of the 
abstractions.

Property Type and Property Binding form a special type-instance relationship. A property binding provides <binds> a 
value for a <bound by> property type within the identifiable entity it is <bound to> . This is similar to the idea of a 
“triple” in [RDF]. The Property Type defines the meaning of these properties bindings for the type it is a <property of>. 
As such, the property binding is an instance of its property type. Recognizing properties as types allows us to use the 
same type/instance and type hierarchy tools we have seen for entities with properties.
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Figure 5.20: Definition of Property Type & Property Binding



A Property type is a <property of> some type, corresponding to the “domain” of the property in [RDF]. Property of 
constrains the types of entities that a property binding can be <bound to>. Likewise, a property <is of type> a type that a 
property binding <binds> to that corresponds with the range of a property in [RDF]. Note that <is of type> is defined by  
a “chain” through a rule. We will define these rules in more detail below.

The following sections show how the concrete subtypes of property and property binding are used.

5.7.2 Characteristics

Characteristics are some quality inherent in something, they describe a quality of that thing and help differentiate that 
thing from other things. Other terms are “property” or “attribute”. There are characteristic types and characteristic 
bindings. Typical examples would be the weight of a person or the color of a ball. Characteristics correspond to a reified 
property in [RDF] but may be interpreted as a simple [RDF] triple if context or time-variant capabilities are not 
required. 

Characteristics should be used when the property type directly inheres in the entity type, there is no intervening 
relationship or structure. Where these is “something in the middle” between two things an “Association” or 
“Relationship” should be used. Relationships are described in section 5.7.3. Those familiar with RDF or OWL may be 
used to defining properties in “pairs” that have an “inverse”. Where there are or could be such pairs, “Association” is the 
right construct to use in SMIF. Where there is a relating class, Relationship is the correct construct.
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Note that “Characteristic Binding” is an “Actual Situation”. This makes Characteristic bindings – the weight of the 
person or the color of the ball, subject to context and time (as a temporal entity) – so the same entity could have 
different values for the same characteristic type at different times or from different sources.  The expectation is that the 
type of characteristics will be a value type, but to allow for diversity in approaches, this is a recommendation, not a rule.

Examples
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Figure 5.21: Definition of Characteristic & Characteristic Kind



Figure 5.22 shows the definition and use of a characteristic we have seen above. Note that in the conceptual reference 
model we have used “Mass” as the type of  weight. This is to allow for the many different units and representations of 
mass that may be used in various data sources. However an actual mass value, such as the weight of Fido, must use some 
concrete unit, in this case Kilograms. This separation of the abstract “Quantity Kind” from a specific system of units is 
considered best practice for conceptual reference models. SMIF machinery is then able to comprehend, integrate and 
translate between various units of the same Quantity Kind. The concept “Quantity Kind” is derived from the [JCGM 
200:2008] standard and is a part of the SMIF language. Specific quantity kinds and units, such as Mass and Kilogram, 
are defined in reference models that use SMIF like [ThreatRisk] and [FIBO].

We can now explore the representation of these concepts in terms of the SMIF conceptual model. In this example we 
will add the fact that this weight was valid during the year 2005 as defined by an ISO date.
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Figure 5.22: Defining and Using a Characteristic



Figure 5.23 is an example instance model showing the definition of “Animal” with a “weight” property, the definition of 
“Mass” and it’s unit “Kilograms” on the left. On the right is “Fido” having type “Dog” and a property value of <weight> 
being 3.3 kg during 2005.

This model uses some rules not yet defined: Generalization Constraint, Property Type Constraint and Representation 
Rule – you may refer to the reference section for details on these rules. Time point and Date Time Coordinate come from 
the [ThreatRisk] example model. Rules are used rather than simple relationships to allow for these constraints to be 
specified in context other than the defining ones – providing for an “open world assumption”.

Focusing on the definition of a characteristic – weight, there is a Characteristic Type (named “weight”) that is a 
<property of> an Animal (an entity type). This property is constrained to have a value of type “Mass” (a quantity kind). 
Mass can be <represented by> “Kilogram” (a Unit Type). Dog (an entity type) is a subtype of “Animal”.

Focusing on “Fido”; Fido <has type> Dog and one characteristic is shown here as an unnamed characteristic binding, 
<has binding> that is <bound by> weight and <binds> 3.2 kg as the value. This characteristic binding <exists for> (is 
valid for) 2005 as defined by an ISO date. Other bindings of weight for Fido could be represented across other time 
points or time intervals. We could also attach “source” and confidence information to these characteristics to aid in 
evaluating its trustworthiness.
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Figure 5.23: Instance Model Defining Characteristic & Value for an Entity



5.7.3 Property Owner Abstraction

Many of the SMIF concept type defines and “own” sets of property types where the instances of these types “own” a set 
of property bindings. Such “Property Owners” are composite semantic units, where all the bindings are considered 
together. Examples of such property owners are associations, relationships and records. Property Owners are defined to 
aid in the definition of these composite semantic units. Property owner is abstract as the true semantic of each kind of 
property owner is defined in the appropriate subtype.

Property owners own owned property bindings, so a property owner is just a set of such bindings without further 
semantic interpretation. There is a corresponding type for each as Property Owner Type and Owned Property Type.

Property owners are used in associations and relationships as is seen below.

5.7.4 Associations and Relationships

We will introduce associations and relationships together, as they are are similar in that they “relate” things. The 
difference is one of independence and lifetime. Relationships are “first class situations”, they have their own timeframe 
and identity. For example, a marriage can be such a relationship. Associations are similar to relationships but their 
lifetime is co-existent with the lifetimes of the related entities. In many cases they are definitional for one or both ends of 
the association. This is also known as an “Intrinsic Relation” [Guizzardi].
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Associations are “Propositions” in that they can be true or false and asserted or negated within a context. Each 
association has a set of “Owned Property Bindings” that define the related things. Associations are defined with 
association types that define a set of owned property types, the ends of the association.

Example
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Figure 5.24: Associations



We have already seem multiple associations, in figure 5.25 we repeat the definition of the “Identification” association 
and an instance of it showing “Frank” <identifies> a person. Identification is inherent in an identifier, it can’t exist 
without it and what an identifier identifies does not change (else it would be another identifier). This Identification 
association is “Existentially dependent” on both entities and it also serves to define those entities. The above is shown in 
terms of the SMIF UML profile, as instances of the SMIF conceptual model it would be:
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Figure 5.25: Association Example

Figure 5.26: SMIF model instances for an association



In 5.26 we see the SMIF model instances corresponding to the UML profile view in figure 5.25. The “Identification” 
“Association Type” has two association property types: “identifies” and “identified by” that each have a corresponding 
type: “Entity Type” and “Identifier”.

This association type is the type of an association (that has no name) with two bindings to an instance of person and an 
instance of Identifier, “Frank”. This association hold for the lifetime of both entities.

5.7.5 Relationships

Relationships, and the corresponding Relationship Type, are part of the foundation of the SMIF language. In fact, SMIF 
conceptual reference models could be thought of as “relationship oriented” rather than “object oriented”. This is because 
much of the semantics of a domain is captured in how things relate.

Relationships in SMIF are considered “first class” entities, or as described in [Guizzardi2015] “Full-Fledged Endurants” 
where “a relationship is the particular way a relation holds for a particular set of relata”. This means they have their own 
meaning, identity and life-cycle. Relationships augment situations in that they are first-class actual situations. 
Relationship types can specialize other relationship types. Relationships can have characteristics and participate in other 
relationships – of particular importance are other relationships that define when a subject relationship is valid or when it 
is not. While a relationships as a “two ended line” is the most common, relationships can have any number of “ends” 
that relate involved things. This is called an “n-ary” relationship in the literature.

While relationship instances may become “true or false” in certain time-frames or context, each relationship instance is 
considered atomic and invariant. That is; the “ends” of the relationship instance never change. For example, if we have 
the relationship “John is located in Virginia”, we could say this is true from 2012-2016 but we would never change 
“John” or “Virginia” for that relationship instance. If we wanted to say “John is located in Mexico”, that would be 
another relationship instance with its own life-cycle, perhaps in 2017. This allows us to “track” John over time or to just 
consider where John is right now. It also allows us to attach metadata to each relationship instance, for example, who 
said that John is located in Mexico in 2017? By recognizing relationships as first-class situations and temporal entities, 
SMIF provides a way to account for time and change over time – this is known as “4D” in semantic literature, where the 
4th dimension is time. Relationships can also be used as more of a “snapshot in time” where 4D is not of concern. 
Relationships with no time constraints or time-dependent context are considered to be true indefinitely.

The “ends” of a relationship are represented as properties. Each property defines a related thing, also known as the “Qua 
Entity” [Guizzardi]. The naming convention we use in SMIF is that these ends are named as verb phrases that are the 
view of an end from the other ends as we will see in the examples.
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Figure 5.27 shows the SMIF conceptual model defining relationships, building on concepts we have already seen such 
as situations, associations and properties. 

Relationship types build on “association” and “owned properties” as the ends of relationships. In the Characteristics 
section we saw that each characteristic is an independent situation. On the other hand, owned properties are always “in” 
something else – in this case a relationship. There is no way to say that a relationship exists in time “A” where as one of 
its ends exists in time “B” - relationships are an atomic unit. This is why the “Owned Property Binding” is shown as 
being “owned” by the “association”. 

A relationship is a special kind of situation involving the related elements, each identified by a binding owned by the 
relationship. Likewise the Relationship Type is a kind of situation type that has a set of owned property types (it is legal 
so share owned property types between relationship types).

As we noted above, since relationships are situations you can define other relationships that involve relationships. For 
example if we define the relationship that Sue possesses Key-card-A8988 which enables her to enter building 5. This 
“possession relationship” could be altered by a theft which could have stolen that key card.

Example 1
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Figure 5.27: Defining Relationships



The “Permission” relationship example is defined between an actor and an activity in [ThreatRisk]. We also see an 
instance of this relationship in the UML profile as “Sue” having permission to “Enter building 5”. Next we will look at 
the relationship definition and instances in terms of the SMIF conceptual model.

Assuming that “Actor” and “Activity” are already defined, we define a new “Relationship Type” with a name of 
“Permission”. Permission has two “Owned Property Types”: “may be performed by” an entity that <is of type> “Actor” 
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Figure 5.28: Defining and Using a Relationship



and “has permission to perform” entity that <is of type> “Activity”. (Note that we are using the “shortcut” property 
chain “<is of type>, which implies a property type constraint).

To represent an instance of “Permission”, giving “Sue” permission to enter building 5 we create a relationship which is 
an instance of “Permission” which represents (is a sign for) Sue’s permission. - the actual Sue having the actual business 
permission to enter the actual building; we say this to emphasize that we are modeling the “real world”, not data about it. 
Sues’ permission relationship has two “Owned Property Bindings”: One that binds Sue to “may be performed by” and 
the other that binds “Enter Building 5” to “has permission to perform”. Of course both Sue and “Enter building 5” could 
be bound in other relationships.

Example 2

Building on the example above, we would like to represent the idea of a “Credential”. A credential can attest to a 
permission or other kind of ability. 
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Figure 5.29: Relationship Involving Relationships



Permission is a subtype of “Ability” (we know it it not in the diagram, trust us). An ability is a relationship between an 
actor and some resource they can use – in the case above the ability was “Permission” to do something and the resource 
was an activity. Note that there is a relationship type “Attest to Ability” between a credential and such an ability. A 
credential <attests to> some ability. This shows how relationships can be “first class” elements and the subject of other 
relationships – the “Permission” relationship is one end of the “”Attests to Ability” relationship.

At the bottom of figure 5.29 we see an instance of the relationship that is at the top of figure 5.29, where “Sue” <has 
permission to perform> “Enter Building 5”.  We also see that “Key-card-A8988” <attests to> this ability in a “Attest to 
Ability” relationship. Note that the notation used here, a UML instance diagrams, is not what we would show to 
stakeholders – they would most likely see a custom user interface.

We will now look at the above in terms of SMIF model instances instead of the UML profile.

In a pattern very much like the definition and use of “Permission” we see the definition and use of “Attest to Ability”. 
The interesting addition is that the “<attests to> end of “Attest to Ability” has a type of “Ability”, a relationship type that 
is a supertype of “Permission”. This allows “Sue’s Credential”, to <attest to> “Sue’s Permission to enter building 5”. 

The result of the above is that we have properly represented that sue has a permission as well as a credential for that 
permission. Consider the additional types and relations that could build on this foundation:

• We could have a “Possession” relationship, representing that Sue is in possession of her credential.

• We could represent an incident where the credential is stolen and possession is transferred to a terrorist, thus 
providing access to an attacker.
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Figure 5.30: Relationship Involving Relationships – instance model



• We could represent and evaluate various threat scenarios relating to such a stolen credential.

• We could model mediating actions and their result.

5.8 Composition and Sequencing of Actual Situations
In section 5.4 we discussed situations from the “outside”, treating a situation like any other identifiable entity. Situations 
are a composition of other entities and relationships – the elements that make up a situation are “asserted” by the 
situation.

Subtypes of “Situation” are “Actual Situation” or a “Pattern”. This section deals with actual situation composition, we 
will look at patterns in a later section. Actual situations are complete, where as patterns may have variables.

As shown in figure 5.31 we see that a situation and an actual situation is a Context that <asserts> or <negates> 
Propositions. Propositions can be rules, relationships, characteristics, patterns or other situations. Each of these 
asserted/negated propositions becomes an element of (something true/false within) the subject situation context. 

We have already seen some examples of atomic situations; relationships and characteristics. Each relationship and 
characteristic, such as those seen in section 5.7, is an atomic situation. A relationship is a configuration of the set of 
things in bound together immutably for a time period. If we had a set of such relationships, all true “together” it would 
make up an actual situation. Since situations are temporal entities, they exist for a certain time interval but the elements 
within them may change.

Building on the example of Sue and her “key card”, we could have the situation that Sue has a permission, the key card 
attests to that permission and that she is in possession of it. We are using some additional types and relationships defined 
in [ThreatRisk] and are assuming these are sufficiently intuitive to be shown without definition. The [ThreatRisk] 
specification is available for review.
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Figure 5.31: Actual Situations



Figure 5.32 shows the addition of the “Possession” relationship – Sue <possesses> Key-card-A8988. We also introduce 
the “Sue has her card” actual situation which started “Jan 1 2005”. This situation <asserts> the possession, the 
permission and the attest to ability relationships. These relationships were all “true” starting on this date, based on this 
context of the “sue has her card” situation. Note that it doesn’t say anything else about these relationships, this does not 
imply that any of these situations did or did not exist at any other time – that could be said, but it is not here. Lack of an 
assertion does not imply the opposite – this is the “open world assumption” in action.

But what if Sue’s card got stolen?
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Figure 5.32: Initial Situation Example



In an attack (not shown), Sue’s card was stolen by “Alexander Mundy6”, so now we have a new situation - “Sue’s card 
was stolen”. There is a new “Possession” relationship – Alexander Mundy <possesses> “Key-card-A8988”. In this new 
situation starting on Feb 3rd 2008, it is asserted that Alexander possesses the card and that the card still attests to the 
permission of Sue to enter building 5. This is also classified as an “Undesirable Situation” (A classification from 
[ThreatRisk]). Note that in this situation Sue’s possession of “Key-card-A8988” is “negated”; that it is stated to not 
being true. We are saying Alexander has it and Sue doesn’t.

Assuming Sue reported the theft there should be some mediation action taken!

6“It takes a thief” Television Series
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Figure 5.33: Example Situation After Theft



The situation after a mediation (mediation activity not shown) is that card “Key-card-A8988” was revoked and a new 
card, “Key-card-B8988” was assigned to Sue. The post-mediation situation called “Sue assigned new card” shows that 
Sue’s permission is still in tact (the permission at a business level never changed), that Sue has the new card. But, the 
“attest to ability” relationship of “Key-card-A8988” has been negated and “Key-card-B8988” asserted (how this 
happens it outside of this model). In the final situation we don’t know if Alexander still has the old card or not – but we 
don’t care. Building 5 is safe!

What this has shown is a sequence of situations, happening in time, relating things that exist across all these situations.
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Figure 5.34: Example Situation After Mediation



In that each situation is its “own thing” happening in its own timeframe they can all “co-exist” in the same repository 
and be analyzed together.  We can have an overall situation “Sue’s Permission Sequence” that asserts them all and 
defines some ordering. We could also add additional relationships, perhaps to say Sue's “business permission” is valid in 
2005-2010. Note that Sue, the permission, the key cards and their relationships are not “created and deleted”, but retain 
their lifetimes through these various situations. What changes is the situations they are asserted in and the termination 
dates of the time intervals. This “4D” capability allows the federation of information across different timeframes such 
that we can analyze actual and possible cause, effect, correlation and mediation.

“Actual Situations” are the glue that binds together these timeframes and related entities that exist across time. Also note 
that we are showing each assertion individually, but it is possible to bunch a set of elements together under a package 
and assert them together.
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Figure 5.35: Sequence of Situations Example



5.9 Patterns
Patterns are similar to actual situations in that they are configurations of entities and the relationships between them, 
however patterns represent a set of real or possible actual situations. Patterns have variables that are are placeholders for 
elements in actual patterns. 

For example; Sue having possession of a credential for entering building 5 is “actual”. People possessing a credential to 
enter some building is a pattern. The pattern <classifies> actual situations that meet the constraints of the pattern.

While patterns may contain variables, they may also include actual entities. For example, we could describe the pattern 
of people that have permission to enter building 5 but do not have the credential in their possession – a pattern to worry 
about. “building 5” is an actual entity where as the person and their credential are variables.

Patterns may be used for information mapping, to express rules, to query or to define projections of viewpoints for 
specific kinds of stakeholders.
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Figure 5.36: Full Pattern Model



For context, figure 5.36 presents the full pattern model without further comment. We will “build up” these concepts one 
step at a time, below.

5.9.1 Patterns – top level

Figure 5.37 illustrates how patterns fit into both types and actual situations. The “internals” of complex patterns using 
“Pattern Variables” will be discussed below.

Patterns are a situations in that they describe how other entities are related and combined, just like an “actual situation”. 
Patterns are a “Situation Type” in that they <categorize> other situations that could be other patterns or actual situations. 
Patterns are a “Lexical Scope” in that they “own” specific assertions and variables that describe the pattern. Patterns are 
property holders in that they may have pattern variables.

5.9.2 Repeated Patterns

At the simplest level, patterns can be just like actual situations except that they may happen over and over. For example, 
if there is the situation of “My coffee cup is on my desk”, that situation may occur almost every morning, except 
Sundays – making it a pattern. Each “actual situation” that the pattern <categorizes> has a specific time – the cup was on 
my desk: Monday, the cup was on my desk, Tuesday, Etc. For such simple patterns, they look just like “actual situations” 
with some detail missing – in this case the timeframe. Such a “repeated pattern” is the simplest kind of pattern – it has 
no variables other than the time the pattern instance occurs.
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Figure 5.37: Patterns - Top Level Model



In figure 5.38 we revisit Sue and her key card. We define a pattern “Key Card Possession” that asserts two things: Sue 
has permission to enter building 5 and Sue has possession of Key-card B8988. But, what if Sue had her card on Jan-1, 
lost it on Jan-2 and found it again on Jan-3rd? We have two “repetitions” of the same pattern “Key Card Possession 
Pattern”, each at a different time. Note we don’t know what happened on the 2nd or the 4th – those would be additional 
assertions. Remember, lack of an assertion does not make it false (open world assumption)

In the top box “Definition of Pattern” we see that defining this simple pattern is not that different than defining an 
“actual situation”, but there are no time parameters. We are declaring it as a “Pattern”.

In each of the lower boxes we see an “instance” of this pattern: e.g. “Has card on Jan 1 2009” <has type> “Key Card 
Possession Pattern”. This actual situation exits for the time period “1/1/2009”, since it is an instance of  “Key Card 
Possession Pattern” we know that all assertions made for the pattern (the possession and permission) hold for what the 
pattern <categorizes> We know this because a type, like all context, applies its assertions to each thing it 
<contextualizes>. So the pattern assertions are carried forward to all its instances; both “Has card on Jan 1 2009” and 
“Has card on Jan 3rd 2009” assert both the permission and the possession. In short; everything said about the pattern 
applies to all the pattern instances. 
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Figure 5.38: Repeated Pattern Example



The pattern instances will be valid, <exist for> each of their indicated time periods.

5.9.3 Pattern Variables and Bindings

Pattern variables provide for variability of pattern contents.  For each thing that may change (including relationships!) 
there is a pattern property.

Figure 5.39 shows the definition of “Pattern Variable”, the “Variable Qualification” enumeration and “Qualified 
“Proposition” to help define patterns and “Pattern Match” using “Variable Binding” to match patterns to situations. We 
will initial focus on “Pattern Variable.

Pattern variables provide a placeholder for the “real” elements in actual situations. Pattern variables specialize “Owned 
“Property Type” so they have a type, <is of type> and <has owning pattern> of the pattern in which the variable is 
defined. Pattern variables have a “quantification” that defines the semantics of the variable within the context of the 
pattern. We will see how these are used in the examples.

The intent of patterns is to ultimately classify actual situations; either by finding them or asserting them. Elements within 
the actual situations are bound to pattern variables using variable bindings. This proves that a particular pattern 
<classifies> an actual situation. Said the other way, the pattern is a type of the actual situation it matches based on the 
variable bindings in a pattern match.

Qualified Proposition provides the ability to reference some proposition, such as a Relationship, as a variable within a 
pattern. These propositions typically involve other pattern variables. For example, a relationship between a Coffey cup 
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Figure 5.39: Pattern Variables



and a table is sits on is <qualified within> a qualified proposition as part of a pattern. When there is an actual Coffey cup 
on an actual table the Coffey cup, the table and the relation between them are abound to their respective variables.

“Pattern Match” and “Variable Binding” are used to connect a pattern and its variables with actual situations instances 
and the elements that constitute them as will be seen in section 5.9.6.

5.9.4 Example pattern definition in UML Profile

The SMIF UML profile provides for the expression of patterns using “structured classifiers”. Each pattern variable is 
either a property or connector owned by a structured classifier. Connectors are used to define “Qualified Propositions” 
based on associations.

Keeping with our example based on Sue and her key-card, figure 5.40 defines the “General Key-Card Possession 
Pattern”. This pattern defines “variables” for the person having permission, the activity they have permission for and the 
key-card. These are called “Some Actor”, “Some Activity” and “Some Key Card”, respectively. The connection between 
these kinds of entities are relationships; “first class” situations in their own right. For this reason we can define variables 
for them as well. These are called “Some Permission”, “Some Possession” and “Some attest to ability”. 

Note the “box” for “Some permission” with an “Equivalent to” dependency to the permission connector line. This is 
required due to UML’s inability to represent connectors as association classes. To mediate this the association class is 
made a part that is equivalent to the connector of the same association class. This allows association classes to have 
connected parts as shown. This separation is not required in the SMIF model.

An implementation of SMIF will be able to “match” information about real people and permissions to these patterns. 

5.9.5 Example pattern definition in SMIF model

As with all UML representations of SMIF there is a SMIF model counterpart. The model instances that correspond to 
the above UML example are as follows:
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Figure 5.40: Patterns in UML Profile Example



The above model of instances of the SMIF metamodel define the pattern illustrated using the UML profile. Note that the 
names of the elements in the meta model instances correspond directly to those in the UML profile view. We note again 
that this would not be a notation used in any application.

The pattern “owns” the pattern variables, including the “qualified propositions” that provide variables for relationships. 
Each of the pattern variable instances: “Some Actor”,. “Some Activity” & “Some Key Card” will be “bound” to actual 
entities filling those placeholders. 

The variables for relationships between those entities: “Some Permission”, “Some Possession” and “Some attest to 
ability” will be filled by actual relationships that match the form of the relationships those variables <qualifies>. 
Remember that relationships may be “first class” entities with their own identity, context and time frame – so it is just as 
important to have placeholders for them as for the more “noun oriented” entities the usually connect. The relationships 
referenced in a pattern provide a template for the actual relationships that fill the slots. In this way each relationship 
essential acts as a “sub pattern”. 

As associations (not shown in this example) are not temporal it is generally not required to have an explicit variable for 
each one – each association or other proposition defined within a pattern will be “replicated” in each instance with its 
own identity.

This pattern also shown how “qualification” is used. Most of the pattern variables have a qualification of “Select”. 
Select will enable the pattern to “match” any configuration of elements that can fill all the select variables. In this 
example it would be any actor that has permission to perform an activity and there is a credential attesting to that 
permission. What is not required for the pattern to match is that that credential is in the possession of the controlling 
actor. Alone this may not make much sense, but when used for a query or as an indicator for mediation it could become 
meaningful.  We could also mark possession as “Negate” in which case it would match all permissions where the actor 
did not have possession of the credential. Various combinations of “qualification” provide for the real capabilities of 
patterns.

Comparing patterns to an SQL query, “select” is like the columns in the “where clause” and “Optional” would be like 
the columns listed after the “Select” statement information to be returned.
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Figure 5.41: SMIF Model Example of Pattern Variables



5.9.6 Pattern Matching

“Pattern Match” connects a pattern with an actual situation it matches or another pattern it matches. Focusing on pattern 
match:

We see that a “Pattern Match” <satisfies> a pattern that <matches>  a situation that is the instance of the pattern. This is 
supported by a set of “Variable Bindings”  to “Pattern Variables” that the pattern match <states>.

Variable Binding builds on the general concept of a “Property Binding” in that it <binds> something. What it <binds> is 
<bound to> some entity based on the the property it is <bound by>. This is similar to the RDF/OWL concept of a 
“triple” with the exception that bindings are directly or indirectly identifiable.  Variable Bindings are bound within the 
context of a pattern match (which could be represented as a named graph in RDF, but there are other approaches to 
structures in RDF).

So within a Pattern Match, each variable is bound to one or more individuals that satisfy the constraints of that variable.

5.9.7 Pattern Matching Example

Consider a situation we have already seen: Sue and her Key-card. We will consider if it could be an instance of the 
pattern defined in section 5.9.5.
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Figure 5.42: Pattern Matching Model



The above defines 3 “entities” and three relationships. 
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Figure 5.43: Potential instance of a pattern



Figure 5.44 shows a pattern match and the binding of just one pattern variable (Some Actor) to one actual person (Sue). 
Just one is shown because all the elements for a pattern binding become somewhat messy to diagram – it is not 
something most people need to look at other than to understand the concept. At this point we are just showing one of the 
variable bindings, all will be required to match the pattern.

The “Pattern Match” is shown as it <matches> the “Has card on Jan 1 2009” actual situation and this situation 
<satisfies> the “General Key-Card Possession Pattern”.  The “Pattern Match” <states> a “Variable Binding” that 
<binds> “Sue” <bound by> the “Some Actor” Pattern Variable which is <bound in> the “General Key-Card Possession 
Pattern”.

Note also that as a convention of showing these instance diagrams in UML the type of the pattern variable is shown as a 
one of the types of the variable – this is required to satisfy UML’s rules for instance diagrams. In the actual model the 
variable <is of type> the type of the variable.

The above shows just one of the six variables being bound. 
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Figure 5.44: Binding of a single variable



Figure 5.45 shows all the variable bindings owned by the pattern match. As we said, it is not that readable but provided 
for reference. The set of all the bindings “proves” that the actual situation matches the pattern.

5.9.8 Computed Variables

Some variables in a pattern are computed based on other variables. Variables may be computed using either Expression 
Variables or Subset Variables.
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Figure 5.45: Full Binding of Pattern



Figure 5.46 shows the definition of subset and expression variables. Both of these types compute the value(s) of a 
variable based on other variables. 

Subset Variable uses a base variable it <subsets> and applies additional constraints to the base such that the subset 
variable holds only those values that conform to these constraints. The most common constraint is probably the type of 
the subset variable as defined by <is of type>. The subset may also have required (<select>) characteristics and 
relationships as well as a general <condition> expression.

Expression Variable defines a <computation> expression that provides the value(s) for the variable. Note that as 
expressions may not be “reversible”, it may not be possible to assert an expression variable. The ability to assert  ot map 
to an expression variable is implementation specific.
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Figure 5.46: Subset and Expression Variables



5.9.9 Subset Variable Example

Figure 5.47 shows a little more context for the “Possession” relationship we have been using as well as the “Controlling 
People” pattern that uses this relationship.

Controlling actor as a role

Note that “Controlling Actor” is defined as a “Role” and that this role is a <<Facet Of>> an Actor. Note also that 
“Person” in an indirect subtype of “Actor”. A role is a dependent classification of some entity. What this model says is 
that any particular actor may be a “Controlling Actor” in various context or timeframes but that an actor is not 
necessarily a controlling actor. The controlling actor role may come and go with regard to any particular actor, such as 
“Sue”. By saying that “Controlling Actor” is a <<Facet Of>> an actor, we are saying that only an actor may play this 
role. You must first be an Actor, then you can be a controlling actor. Since Actor is not a role (or other kind of facet, we 
will explore this in another section), an actor is always an actor – it is essential to their nature. Since “Person” is an 
indirect subtype of actor, a person may be a controlling actor. Since “Possession” is related to “Controlling Actor”, any 
person that possesses something is implicitly a controlling actor – they control what they possess.

Not shown in this diagram is that possession is a subtype of “Control” which relates the same roles. So there may be 
some controlling actors that don’t possess anything (this could be added to the pattern but we are trying to keep it 
simple).

Likewise, playing the role of a “Controlled Entity” can be played by any “Actual Entity”.

The “Controlling People Pattern”
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Figure 5.47: Subset Variable Example in UML Profile



“Controlling People Pattern” is a pattern that starts with a “Select” of a “Person”. All people will “Match” this pattern. 
Besides matching people we want the pattern to tell us if each person is a controlling actor and, if so, anything they 
possess. We may want to use this pattern for a query or some kind of data mapping.

For each matched pattern there will be exactly one value bound to “Some Person”. If that person “plays the role” of  a 
“Controlling Actor” then the “Controlling Person” variable will be populated with the same person. Said another way, 
the set of all “Controlling Persons” is a subset of all “Some Persons” based on “Some Persons” playing the role 
“Controlling Actor”.

All “Possession” relationships from “Controlling Person” will be bound to the “Any Possession” relationship and the 
“Some Possessions” variable. Note that “Any Possession” and “Some Possessions” may be bound to multiple values.

5.9.10 Controlling Person Pattern in the SMIF Model

The UML Profile diagram in figure 5.47 has a corresponding model as instances of the SMIF model as shown in figure 
5.48. Notice that “Controlling Actor” is a “Role” and that it is constrained, using a “Facet Classification Constraint” to 
be a role of an “Actor”.  Person is an indirect subtype of Actor.
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Figure 5.48: SMIF Model Instances of the Controlling Actor Pattern



The “Controlling People Pattern” owns a “Select” property “Some Person”, so all persons will be matched by this 
pattern. The optional “Controlling Person” variable will have a value only if the person matched in “Some Person” is 
also a “Controlling Actor”. That Controlling Actor Person may then have “Some Possession” relationships with “Some 
Possessions”. Note that as “Controlling Persons” are selected there may be multiple values bound to “Any Possession” 
and “Some Possessions”.

5.10 Mapping
Mapping defines how different concrete or logical data structures represent the same or related concepts as defined in a 
conceptual reference model. By “grounding” the meaning of the data structures in common concepts SMIF provides a 
foundation for integrating information from multiple sources, translating between data representations and federating 
information for analytics.

The basis of federation is patterns (See section 5.9). A mapping is a pattern that defines a correspondence between two 
sub-patterns, one “Concrete” and one “Reference”. The concrete pattern shows how data structures represent reference 
concepts. The sub-patterns are typically derived from different, independent, models. The patterns can then operate 
bidirectionally (as ling as no functions are used) – if data in the concrete source changes a SMIF implementation can 
update instances of the reference model. If instances of the reference model change, a SMIF implementation can update 
the concrete data source.

When using the SMIF UML profile the both models are loaded into UML. The mapping patterns are then represented 
using UML composite structure diagrams augmented with profile support. We will start with an example expressed 
using the UML profile and then see how it is represented in the SMIF model.

5.10.1 Mapping Components Example

Our example will focus on the mapping of “threat actors” and “statements” as defined in the “Structured Threat 
Information Expression” (STIX) XML schema. The STX schema and everything it references are imported into UML 
using off-the-shelf UML tool capabilities. This results in a UML model that directly reflects this XML schema and can 
then be used as the basis for mapping to the operational threat risk conceptual reference model (OTR). 

Figure 5.49 shows the “top level” of this mapping and the basic components of any mapping.

• A mapping connects two models, one considered the “concrete” model and once considered the “reference” 
model. The concrete model is the one more specific to a technology, system or solution where as a reference 
model is more conceptual and less committed to concrete concerns. In this and many cases this choice is 
reasonably clear. There are cases where the models are at about the same level of abstraction, in which case the 
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choice may be arbitrary – but making a choice of which to call the “concrete” model and which to call the 
“reference” model is required. 

• The “STIX Concrete Data Model” is the concrete model, it is directly derived from an XML schema intended 
for information exchange between STIX enabled systems. Classes within this model are “ThreatActorType” 
and “StatementType”.

• The “Threat/Risk Conceptual Reference Model” (OTR Model) is the reference model in this example. This 
model has been constructed with other models (including STX), threat relevant literature and stakeholder input 
to capture the concepts represented by STIX and other data models. The goal has been to identify and define 
the concepts the data is representing and model them as best understood by stakeholders across multiple 
domains of interest impacting the analysis of threats and risks. The OTR model is not a data model, it is a 
model of the domain as stakeholders conceive it. This conceptual model is used to “pivot” between different 
data representations.

• A data element, such as ThreatActorType is intended to model data that represents something in the “real 
world” (or perhaps a world we imagine as possible, but based on the real world). For each “real world” concept 
that a data element represents, a <<Represents>> stereotype is defined. This says that the data structure 
contains some information about the represented concept. <<Represents>> is not generally sufficient to fully 
map data, that is not its intent, it is a declaration that it can contain information about some concept which is 
then used to filter the more detailed mapping rules such that only things that represent a concept are mapped to 
it. We will see how this works, below. In the example we see that the STIX class “ThreatActorType” 
<<represents>> a real-world threat actor as defined in the OTR model. We also see that a STIX 
“StatementType” can represent information about any “Identifiable Entity” as defined by the OTR model.

• The rightmost  column “Rules defining mapping” shows the specific mapping rules that define how and when 
the STIX data types represent the OTR concepts. This “insides” of these rules are UML structured classifiers 
that comprise the rule details. In an implementation of SMIF these rules help implement the translation and 
federation of data defined using the mapped data models.

• One other element that can be seen at this level is the “strength” of the rules. Strength defines when a rule is 
asserted (triggered). The “STIX Threat Actor Rule” has “strength-global” which means it always applies and 
can be triggered by any data source changing. The “STIX Statement Rule” has “strength=local” which means it 
is only triggered when required to fulfill another rule – such as the threat actor rule. A 3rd possibility is 
“strength=default” which defines a rule that is only triggered if no other rule has mapped the elements.

The above example should make clear these basic mapping elements; the concrete and reference models, how data 
elements may represent concepts and the top-level identification of mapping rules. In the following sections we will look 
at each of these in more detail.

5.10.2 STIX Concrete Data Model
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Figure 5.50 shows a fragment of the STIX model dealing with threat actors. As noted above, this is directly derived from 
the STIX XML Schema.  For the example we will not delve to much into the specifics of the STIX model, it is presented 
so that the mapping example can be better understood. 

There are a few things to note about this model. First, there is a good correspondence between “ThreatActorType” as 
defined here and the general concept of a threat actor. As is typical, the STIX definition makes threat actor specific to 
Cyber threat actors, for the purposes of STIX. This is more narrow than the general concept of a threat actor – which 
could cause many kinds of mayhem.

We also note that information about the threat actor (the real actor in the real world) is intermixed with metadata about 
the threat-actor information, such as confidence. Other than understanding the concepts, there is no deterministic way to 
know that “Motivation” is probably about the actor where as “Confidence” is about the information record. One of the 
challenges of mapping is untangling these mixed concerns.

Note that “StatementType” is used in the STIX model for “Intended effect” and “Motivation”. In STIX “StatementType” 
is used where there are no explicitly modeled data elements for a concept, a StatementType just provides a definition 
and some metadata for these concepts. In other models these elements may be explicitly modeled, a challenge for 
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integration. Having a motivation or metadata about confidence is not at all specific to threat actors so the OTR model 
defines these concepts at a much higher level so that they can apply to anything that the would make sense for that 
concept. So having a name can apply to anything we can identify where as only a threat actor can perpetrate a disruptive 
action (based on how these concepts are defined in OTR). Conceptual reference models are define concepts free of the 
context of a particular application or data structure, reflecting their meaning to stakeholders.

As with all UML models, properties or relationships that are defined for a “supertype” (or superclass) apply to all 
subtypes. So from this diagram we can see that a “threat actor” (like any identifiable entity) may have a name but that if 
you perpetrate a disruptive action you must “play the role” of a threat actor that must be a “social agent” (person or 
organization). We will delve into roles, below.
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5.10.3 OTR Conceptual Reference Model
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Figure 5.51: OTR Conceptual Reference Model Fragment



The OTR model fragment is figure 5.51 shows the properties and relationships that will be used to map concepts in the 
STIX model. Note that these two models are of a very different “shape”, use the same or different terms but clearly have 
commonality. A fundamental difference is that in the OTR model concepts are defined for their most general 
interpretation – This is how OTR is structured, how general to define reference concepts is a decision left to the model 
authors.. 

Another thing to note is that not all the information in either model is “complete” relative to the other.  The purpose of 
conceptual reference models is to capture shared concepts across domains and different data models. The concepts that 
are mapped between different data models can be mapped – the others are ignored or must be populated with data 
specific rules.  It is simply not practical for every concept of every data model to be mapped – so we don’t try. 

It should also be noted that there is no “required” reference model, any number of reference models may be used to 
accomplish some mapping. OTR is a reference model for threats and risks, it does not claim to be the only one possible 
or useful.

As with the STIX model, we will not look to deeply into the specifics of the OTR model semantics as our purpose here 
is to use these model fragments as part of the mapping example.

5.10.4 STIX / OTR Mapping Rule

Figure 5.52 shows the detailed mapping of STIX ThreatActorType to OTR Threat Actor as  the “composite structure” of 
the “STIX Threat Actor Rule” we saw in the summary. It does this using pattern variables, relationships and “Match” 
rules.

Additional examples of mapping included in the profile section.
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6 SMIF Conceptual Model Reference (Normative)

6.1 Diagram: SMIF Packages

f. SMIF Packages
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7 SMIF Conceptual Model::Associations
An association asserts a formal condition involving related things, the association ends. An association may be asserted 
within a context as true or false within that context. Each association has a number of bindings of which are immutable 
for that association.

Associations are differentiated from relationships in that associations are fully dependent on the things they relate. These 
are known as "formal", "thin", "internal" or "intrinsic" relations in much of the literature.

7.1 Diagram: Associations

g. Associations
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7.2 Class Association  
An association makes a logical statement involving related things, the association ends. An association may be asserted 
within a context as true or false within that context. Each association type has a number of bindings of which are 
immutable for that association.
An association may be true or false within its context and is atomic in its truth value.
Associations are differentiated from relationships in that associations are not situations - they are not temporal and do 
not change over time. Associations may be a consequence of relationships or other situations or may be derived from 
qualities of associated ends.
Associations can "own" owned property bindings as their "ends".
See also: Relationship
[Guizzardi] Intrinsic Relation
[UML] Link
[DOLCE] Formal Relation

Direct Supertypes
Property Owner, Proposition

Associations
 <<Restriction>> : Association Type [1..*]   Subsets: has type:Type    

7.3 Class Association Type  
A type of Association (See Association for details) which defines a set of "Association Property Types" which are the 
types of association property bindings. Associations are not situations - the are not temporal things. THis does not 
prevent subtypes of associations from being situations.
[Guizzardi] Intrinsic Relation Type
[UML] Association
[OWL] For binary associations, may be considered a pair of properties that are Inverse Object Properties.

Direct Supertypes
Property Owner Type

Associations
 <<Restriction>> : Association   Redefines: categorizes:Thing    
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8 SMIF Conceptual Model::Expressions
Expressions define computations across SMIF models.

8.1 Diagram: Expressions

h. Expressions

Expressions define computations

 

8.2 Class Constant Reference  
A calculation that returns a thing identified by <has value>.

[FIBO] Constant
[FUML] LiteralSpecification where subtype of literal is determined by the type of <has value>. 
-LiteralInteger->type is Integer or a subtype
-LiteralReal-> type is not integer or a subtype
-LiteralBoolean->type is Boolean
-LiteralString->type is Text
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Direct Supertypes
Expression Node

Associations
  has value : Thing [1] 

through association: Constant Value 

A constant value referenced in an expression.

8.3 Association Constant Value  
Relationship defining a link to a constant value within an expression.

Association Ends
 has value : Thing [1] 

A constant value referenced in an expression.

 referenced by : Constant Reference [*] 

Referencing constant expression node.

8.4 Class Equality  
Returns TRUE if all <has equal> things have the same value or represent the same thing or set of things regardless of 
how they are represented.
Equality will return TRUE or FALSE.
[ISO11404: EqualityIn every value space there is a notion of equality, for which the following rules hold:

 for any two instances (a, b) of values from the value space, either a is equal to b, denoted a = b , or a is not equal to b, ⎯
denoted a ≠ b ;

 there is no pair of instances (a, b) of values from the value space such that both a = b and a ≠ b ;⎯
 for every value a from the value space, a = a ;⎯
 for any two instances (a, b) of values from the value space, a = b if and only if b = a ;⎯
 for any three instances (a, b, c) of values from the value space, if a = b and b = c , then a = c . On every datatype, the ⎯

operation Equal is defined in terms of the equality property of the value space, by:
 for any values a, b drawn from the value space, Equal(a,b) is true if a = b , and false otherwise.⎯

Direct Supertypes
Expression Node

Associations
  has equal : Thing [1..*] 

through association: Equality Constraint 

Set of things that must have the same value or represent the same thing or set of things for Equality to return 
true.

8.5 Association Equality Constraint  
Relationship defining set of things that will be evaluated for equality.

Association Ends
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 has equal : Thing [1..*] 

Set of things that must have the same value or represent the same thing or set of things for Equality to return 
true.

 has equality : Equality [*] 

Equality constraints for a thing.

8.6 Class Evaluation  
The evaluation of an expression. All references to an evaluation shall return the result of evaluating the <evaluates> 
expression node. All expression nodes referenced within an evaluation shall return the result of evaluating that 
expression node.
An evaluation may be used in place of anything that requires the <resulting type> of the evaluation.

Direct Supertypes
Expression Context

Associations
  evaluates : Expression Node [1] 

through association: Expression Evaluation 

The expression node "head" an evaluation evaluates.

8.7 Association Expression Context  
Context in which an expression will be evaluated. 

Direct Supertypes
Extent of Context

Association Ends
 evaluates in : Context [0..1] 

Context of evaluation and namespace resolution for an expression.

 contextualizes : Expression Context [*] 

Expressions referencing a context.

8.8 Class Expression Context  
An abstract element defining the static or dynamic evaluation context and resulting type of an expression.
An expression context that is referenced by another expression context inherits the referencing context by default.

Direct Supertypes
Identifiable Entity

Associations
  evaluates in : Context [0..1]   Subsets: in context of:Context    

through association: Expression Context 

Context of evaluation and namespace resolution for an expression.

  resulting type : Type [1..*] 
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through association: Result type 

Type of the result of a function
[UML] type (of an operation or expression).

8.9 Association Expression Evaluation  
Relationship defining the expression that will be evaluated by an evaluation.

Association Ends
 evaluates : Expression Node [1] 

The expression node "head" an evaluation evaluates.

 evaluated by : Evaluation [*] 

Evaluations of an expression node.

8.10Class Expression Node  
An abstract class representing the computation of a value which is then bound to the context from which it is called. 
Each expression node has a type of the most general type it can return.

An expression node may reference other elements. Where the other elements are also expression nodes they will be 
considered part of the referencing expression and evaluated in the context of that expression.

The set of related expression nodes forms a "tree" for evaluation.

[FIBO] Expression
[UML] Expression

Direct Supertypes
Expression Context

Attributes
 expression text : Text [0..1]

Textual expression of the expression which is further refined by subtypes of expression.
[UML] StringExpression 

 expression text language : Text [0..1]
expression language used for the expression text

Associations
  evaluated by : Evaluation [*] 

through association: Expression Evaluation 

Evaluations of an expression node.

8.11 Class Function Call  
An element of an expression that performs some operation based on a function type and produces a result.  I.e. plus(a,1).
Arguments are bound to the function call via bindings.

Direct Supertypes
Expression Node, Property Owner
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Associations
  calls : Function Type [1]   Redefines: has type:Type    

through association: Function Called 

Function called

8.12Association Function Called  
Relationship defining the function (a type) called by a function call.

Direct Supertypes
Extent of Type

Association Ends
 calls : Function Type [1]   Redefines: has type: Type    

Function called

 is used by : Function Call [*]   Redefines: has type: Type    

Function calls using a function declaration.

8.13Association Function Implementation  
Relationship defining the implementation of a function by an expression.

Direct Supertypes
Expression Context

Association Ends
 implemented by : Expression Node [0..1]   Redefines: has type: Type    

Expression which defines the implementation of a function.

 implements : Function Type [0..1]   Redefines: has type: Type    

Function implemented by an expression

8.14Class Function Type  
A declaration of a function which performs a calculation on arguments (properties) to produce a result (function result).  
I.e. the definition of plus(a:Number, b:Number).

Functions are intended to be side-effect free and context free (they only depend on their arguments and don't change 
anything) but assertions to specify that certain functions are pure may be required,
Note: FUNCTION ARGUMENTS ARE PROPERTIES of the function.

[FUML] Operation where ownedParameter corresponds with <has property> and type corresponds with <resulting 
type>.

Direct Supertypes
Expression Context, Property Owner Type

Associations
  implemented by : Expression Node [0..1]   Subsets: contextualizes:Thing    
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through association: Function Implementation 

Expression which defines the implementation of a function.

  is used by : Function Call [*]   Redefines: categorizes:Thing    
through association: Function Called 

Function calls using a function declaration.

8.15Class Object Operation Type  
An operation bound to a specific "receiver" in the "Object Oriented" sense.
[FUML] Operation

Direct Supertypes
Function Type

Associations
  receiver : Property Type [1]   Subsets: has property:Property Type    

through association: OO Target 

The property that is the receiver of an object operation. 
[UML] class (of Operation)

8.16Association OO Target  
Relationship defining the "target" type of an object oriented function.

Association Ends
 receiver : Property Type [1]   Subsets: has property:Property Type    

The property that is the receiver of an object operation. 
[UML] class (of Operation)

 received by : Object Operation Type [*]   Subsets: has property:Property Type    

The Object Operation for which a receiver is defined.

8.17Association Result type  
Relationship defining the type or types returned by an expression evaluation.

Association Ends
 resulting type : Type [1..*]   Subsets: has property:Property Type    

Type of the result of a function
[UML] type (of an operation or expression).

 returned by : Expression Context [*]   Subsets: has property:Property Type    

Method returning a type.
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8.18Class Traversal  
Traversal from the current <evaluates in> context to another across a relation or other structure.

A traversal is a structure such that the structure's bindings may hold other properties of a traversal constant as 
independent variables where <traverses through> is the dependent variable. The traversal shall be considered to have the 
type of the relation it is traversing. Traversing binary relations does not require any bindings.

[OWL] ObjectPropertyChain

Direct Supertypes
Expression Node, Property Owner

Attributes
 traverse to relation : Boolean [1] = false

Where traverse to relation is false, the traversal will return the bound element(s) of the <traverses through> property 
from the current context via any intermediate relationships.

Where traverse to relation is true, the traversal shall return the structure/situation/relationship owning the property 
binding.

By default, traverse to relation is false.

 inverse : Boolean [1] = false
Indicates that the traversal is defined based on properties that reference the current context. This results in traversing 
"backwards" across a property to an inverse property or the relation.

Associations
  traverses through : Property Type [1..*] 

through association: Traverse Through 

Property or properties through which a traversal traverses as the dependent variable(s).

8.19Association Traverse Through  
Relationship defining the property of the current context which will be traversed.

Association Ends
 traverses through : Property Type [1..*] 

Property or properties through which a traversal traverses as the dependent variable(s).

 traversed by : Traversal [*] 

Traversals through a property.
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9 SMIF Conceptual Model::Facets
The facet package defines facets, roles and phases. Types that "mix in" to other types in a specific context or timeframe.

9.1 Diagram: Facets

i. Facets

 

9.2 Class Category  
A category is a classification or division of people, events or things regarded as having particular shared characteristics. 
Categorization is typically contextual, potentially transient and may or may not be formally defined.
As with all facets, categories are non-rigid. Something classified by a category must also be classified by an entity type.

Direct Supertypes
Facet
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9.3 Class Facet  
A facet is a "mix in" type that defines an aspect of something but does not define the identity or "fundamental" (A.K.A. 
"Rigid") type of that thing, but some potentially transient role, phase or other way to classify it. Something must have at 
least one type that is not a facet to define that things identity.
Facets do not define independent identity of the referent but technology implementations may create independent objects 
to represent a facet.
An instance of a facet must also have a type that is not a facet to provide the identity of the instance.
The type(s) a facet may categorize may be constrained by a Facet Generalization Constraint. E.g. Policeman is a role of 
a person.

[Guarino1994] Non-Substantial sortal
[Guizzard] Non-Rigid Universal: A universal G is non-rigid iff for a w  W There is an x such that x  extw(G), and ∈ ∈
there is a w  W such that x extw(G)�∈ ∉ �

[SOWA1999] Prehension (Relative

Direct Supertypes
Type

Associations
 <<Sufficient>> : Facet Classification Constraint   Subsets: has general:Type    

9.4 Class Facet of Entity  <<Relationship>>
Facet of entity is the binding of a particular entity to a facet. May also be considered an "as a" relationship. In the case 
of a role, it states that an entity plays the role, e.g. "Joe as a policeman". In the case of a phase, it states that an entity has 
that phase and that it is a phase of that entity, e.g. Sue as a teenager.
Facet of Entity is a kind of contextual categorization in that the entity assumes all of the characteristics of the facet 
where the Facet of Entity is asserted. E.g. if Joe has a policeman role, Joe is a policeman.

Facet of entity is an "Extent of Type" association reified as a relationship in that the binding of the entity to the facet 
may be valid in particular context or time frame. Facet of entity may be the consequence of a relationship. Note: Not 
represented as an association class due to OMG-MOF limitations.

Facet of entity may only relate entities that have a type compatible with the type of the facet, as defined by a Facet 
Classification Rule.

[FIBO] (for roles of actors) AgentInRole.
[FIBO] (for roles of anything else) ThingInRole
[Guarino1994] Externally Dependent Moment (Also called "Qua individual")
[SOWA1999] Prehension

Direct Supertypes
Relationship

Associations
  has facet : Facet [1]   Subsets: has type:Type    

The facet that an entity assumes when it is the facet of an entity.
[FIBO] (for roles) playsRole

  has entity : Identifiable Entity [1]   Redefines: categorizes:Thing    

The entity having a facet (including roles and phases).
[FIBO] (for roles) isPlayedBy
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9.5 Class Phase  
A phase (or state) is a static characteristic of something that exists for limited time(s).  Something takes on or looses a 
phase as a result of some event. E,g, Teenager, living, closed invoice.
A Phase is a situation in that there is a situation coincident with each phase.

[Guizzardi] (Phased-Sortal): Let PS be a universal and let S be a
substance sortal specialized (restricted by) PS. Now, let extw(~PS) = extw(S) \ extw(PS)
be the complement of the extension of PS in world w. In this formula, the
symbol \ represents the set theoretical operation of set difference. The
universal PS is a phased-sortal iff for all worlds w  W, there is a w   W such∈ � ∈
that extw(PS) ∩ extw(~PS) ≠ � ∅

Direct Supertypes
Facet, Situation Type

9.6 Class Role  
A role is a facet type that defines a specific purpose or behavior of a class of things.  E.g. teacher, policeman, or 
employer.
[FIBO] Role. Note that partyInRole or thingInRole are implied by classification of a thing.

Direct Supertypes
Facet
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10SMIF Conceptual Model::Identifiers
Terms and identifiers provide for signs for (ways to identify) anything.

10.1Diagram: Identifiers

j. Identifiers

An identifier that can be represented as text. The text is in the "value" property.

[IDEAS] Sign: An Individual that signifies a Thing.
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10.2Association Identification  
Relationship defining an identifier for an entity.

[IDEAS] namedBy: A couple that asserts that a Name describes a Thing.

[ISO 1087] Designation

Association Ends
 identifies : Identifiable Entity [1]   Redefines: categorizes: Thing    

The entity an identifier identifies.

[FIBO] identifies: is the relationship between something and that which provides a unique reference for it

[ISO 1087] designator: representation of a concept (3.2.1) by a sign which
denotes it

 identified by : Identifier [*]   Redefines: categorizes: Thing    

An identifier for an <Entity>.
[FIBO] hasDenotation

10.3Class Identifier  <<Value>>
An identifier is any value that is used to distinguish an entity from other entities. Note that any identifier may be 
contextualized by one or more context, including language context. Identifiers are a “sign” for an identity where identity 
is an abstraction of individuality that is the basis for identifiers.

[IDEAS] Name: A Representation that identifies a Thing.
[FIBO] Identifier
[CL] Term: expression which denotes an individual, consisting of either a name or, recursively, a function term applied 
to a sequence of arguments, which are themselves terms

Direct Supertypes
Value

Associations
 <<Sufficient>> identifies : Identifiable Entity [1] 

through association: Identification 

The entity an identifier identifies.

[FIBO] identifies: is the relationship between something and that which provides a unique reference for it

[ISO 1087] designator: representation of a concept (3.2.1) by a sign which
denotes it
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10.4Association Identifier in Namespace  
Relationship defining the namespace within which a unique identifier is defined and unique.

[ISO 1087] monosemy: relation between designations (3.4.1) and concepts (3.2.1) in a given language in which one 
designation only relates to one concept

Direct Supertypes
Definition

Association Ends
 unique within : Namespace [1] 

The namespace in which an identifier is defined and has a unique value.
[FUML] memberNamespace

 scopes identifier : Unique Identifier [*] 

An Identifier defined within the scope of a namespace.
[FUML] member

10.5Class IRI Identifier  <<Value>>
A IRI/URI Identifier for an entity, as defined in [RFC3987].

[FIBO] anyURI

Direct Supertypes
Technical Identifier

10.6Class Name  <<Value>>
A word or set of words by which a person, animal, place, or thing is known, addressed, or referred to. Names are not 
necessarily unique.

[IDEAS] Name: A Representation that identifies a Thing.

[CL] Discourse Name

Direct Supertypes
Text Identifier

Associations
  names : Identifiable Entity [1..*]   Redefines: identifies:Identifiable Entity    

through association: Naming 

An entity named by a name.

10.7Class Namespace  
A namespace is a context that provides a way to make identifiers unique and identify exactly one entity. For example, the 
Virginia driver's license division provides unique driver's license numbers.
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Similar to [IDEAS] UniqueNamingScheme: A NamingScheme where different Names will not contain tokens of the 
same Representation Type. 
Note: SMIF identifiers are not instances of their namespace.

[FIBO] IdentificationScheme: system for allocating identifiers to objects

[ISO 1087] terminology 1: set of designations (3.4.1) belonging to one special language (3.1.3)

[FUML] Namespace

[CL] Vocabulary

Direct Supertypes
Context

Associations
 <<Sufficient>> scopes identifier : Unique Identifier [*]   Subsets: defines:Thing    

through association: Identifier in Namespace 

An Identifier defined within the scope of a namespace.
[FUML] member

10.8Association Naming  
Relationship defining a human meaningfully name for an entity.

Direct Supertypes
Identification

Association Ends
 names : Identifiable Entity [1..*]   Subsets: defines:Thing    

An entity named by a name.

 has name : Name [*]   Subsets: defines:Thing    

A human meaningful name for an entity.
[FIBO] hasName: that by which some thing is known; may apply to anything

[OWL] rdfs:label

10.9Association Prefered Identification  
Relationship defining the preferred identifier for an entity.

[ISO 1087] preferred term: term (3.4.3) rated according to the scale of the term acceptability rating (3.4.14) as the 
primary term for a given concept (3.2.1)

Direct Supertypes
Identification

Association Ends
 has preferred : Identifier [0..1]   Subsets: defines:Thing    

Default identifier to use for an entity.
Where multiple identifiers are preferred in differing context any method for selecting the most preferred identifier is 
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implementation specific and not specified by this standard.
[FUML] NamedElement.name: Note: An Identifier that is <preferred for> an entity is equivalent to the name of a named 
element.

 preferred for : Identifiable Entity [0..1]   Subsets: defines:Thing    

The entity an identifier is preferred for.

10.10Class Technical Identifier  <<Value>>
A technical identifier is defined within a technical system, information structure or system of systems for references and 
identity within that system or information element. Such identifiers may have no meaning outside of that system.

Typical technical identifiers include inter document "refs", record numbers, etc. The system should be referenced as the 
namespace.

Direct Supertypes
Unique Text Identifier

10.11Class Term  <<Value>><<Intersection>>
A word, phrase or name used by stakeholders to uniquely identify entities. 

[ISO 1087] term: verbal designation of a general concept in a specific subject field.

Direct Supertypes
Name, Unique Text Identifier

10.12Class Text Identifier  <<Value>>
A code or other simple value that can be represented as text, identifying something that may or may not be unique. 
Simple identifiers may be codes, names, numbers or compound values.
[NIEM] IdentificationType (IdentificationID=value)

Direct Supertypes
Identifier

Attributes
 value : Text

Text value of an identifier

10.13Class Unique Identifier  <<Value>>
A unique identifier is an entity used to uniquely identify something. The identified thing is referenced by what the 
identifier <identifies>.
Identifiers are defined and <unique within> a lexical scope as its namespace.
Multiple identifiers may use the same word or text value (or other forms of values) in differing <unique within> 
namespaces such that the same word may have different meanings in different context.
An entity may have any number of identifiers.

Direct Supertypes
Identifier
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Associations
 <<Sufficient>> unique within : Namespace [1]   Subsets: defined in:Lexical Scope    

through association: Identifier in Namespace 

The namespace in which an identifier is defined and has a unique value.
[FUML] memberNamespace

10.14Class Unique Text Identifier  <<Value>><<Intersection>>
An <Identifier> that is represented using text. e.g. a "word", "phrase" or "name".

Direct Supertypes
Text Identifier, Unique Identifier
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11 SMIF Conceptual Model::Kernel
The kernel subsets the SMIF classes. The diagrams in this package illustrate the concrete classes that are used to define 
the SMIF language.
Note that shaded classes are not instantiated in the kernel and may be "flattened". Specifications for each class and 
association are defined in the corresponding package for that concept.

11.1 Diagram: Kernel Associations

k. Kernel Associations
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11.2 Diagram: Kernel Identifiers

l. Kernel Identifiers

An identifier that can be represented as text. The text is in the "value" property.

[IDEAS] Sign: An Individual that signifies a Thing.
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11.3 Diagram: Kernel Lexical Scope

m. Kernel Lexical Scope
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Kernel Lexical Scopepackage Kernel  ] [ 
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11.4 Diagram: Kernel Metadata

n. Kernel Metadata

11.5 Diagram: Kernel Properties

o. Kernel Properties
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11.6 Diagram: Kernel Rules Summary

p. Kernel Rules Summary

This diagram shown a summary of the primary rules.
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11.7 Diagram: Kernel Top Level

q. Kernel Top Level

Diagram showing summary of top level classes and significant subtypes.
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11.8 Diagram: Kernel Types

r. Kernel Types
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11.9 Diagram: Kernel Values

s. Kernel Values
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12SMIF Conceptual Model::Lexical Scope
Lexical scope defines the structure of models and the ownership of model elements.

12.1Diagram: Lexical Scope

t. Lexical Scope

 

12.2Class Conceptual Package  
A model of a real or possible world as conceived by the model authors.

Direct Supertypes
Package
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12.3Association Definition  
Relationship defining the set of elements defined within a lexical scope.
[OWL] RDF Graph

Direct Supertypes
Extent of Context

Association Ends
 defines : Thing [*]   Subsets: defined in:Lexical Scope    

A model element defined within a lexical scope.
Definition within a scope does not  assert everything within a scope but the lexical scope may be independently asserted, 
thus asserting what it defines.
[FUML] ownedElement, ownedMember

 defined in : Lexical Scope [1]   Subsets: defined in:Lexical Scope    

Lexical scope defining model elements.
[UML]owner

12.4Class Include  
An "Include" is an external scope that is visible and asserted by the owning lexical scope. 
[FUML] PackageImport
[CL] Importation: An importation contains a name. The intention is that the name identifies a piece of Common Logic 
content represented externally to the text, and the importation re-asserts that content in the text.

Direct Supertypes
Lexical Reference

12.5Class Lexical Reference  
A Lexical Reference is an external scope that is visible to but not necessarily asserted by the owning lexical scope. 

Direct Supertypes
Context

Associations
  Referenced scope : Context [1] 

through association: Scope of Reference 

A referenced context, potentially in another model, that provides visibility to the elements in that context.
[FUML] importedPackage
[OWL] directlyImports (implies "Include")

  extends scope : Lexical Scope [1] 
through association: Scope Reference 

A lexical scope that is extended by a lexical reference.
[FUML] importingNamespace
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12.6Class Lexical Scope  
Lexical scope represents model content (the lexical structure of the model) that then models an area of concern. A lexical 
scope may define model elements representing anything.
[CL] Text: A text is a set, list, or bag of phrases. A piece of text shall optionally be identified by a name.
[OWL] Potential scope of a RDF graph defined by <defines>

Direct Supertypes
Namespace

Associations
  defines : Thing [*]   Subsets: contextualizes:Thing    

through association: Definition 

A model element defined within a lexical scope.
Definition within a scope does not  assert everything within a scope but the lexical scope may be independently asserted, 
thus asserting what it defines.
[FUML] ownedElement, ownedMember

  references : Lexical Reference [*] 
through association: Scope Reference 

A reference providing visibility of a lexical scope to an internal or external context.

  states : Thing [*]   Subsets: defines:Thing   asserts:Proposition    
through association: Statement 

<states> combines <defines> with <has assertion> to both define and assert an element within a lexical scope. 
<states> provides a more "structural" organization of concepts that are both defined and asserted in the same structure.

<states> is a convenience for the common case where assertion and lexical containment are combined.

12.7Class Logical Package  
A model of information about systems independent of technical representation.

Direct Supertypes
Package

12.8Class Mapping Package  
A model defining relationships between other models.

Direct Supertypes
Package

12.9Class Model  
A root package. A model has no owner and may be directly referenced as an independent information resource. A model 
is defined in it's self.

Direct Supertypes
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Package

Associations
  : Thing [*]   Subsets: defines:Thing   asserts:Proposition    

  : Thing [*]   Subsets: defines:Thing   asserts:Proposition    

12.10Class Package  
A model element that provides a definitional scope for other model elements. A package may be represented as a 
"graph".

[ISO 1087] concept system: system of concepts set of concepts (3.2.1) structured according to the
relations among them

[FUML] Package. FUML ownedMember corresponds with SMIF <defines>. FUML "nestedPackage" corresponds with 
"defines" where the element defined is a package.

[CL] Module: A module consists of a name, an optional set of names called the exclusion set, and a text called the body 
text.

Direct Supertypes
Lexical Scope

Associations
 <<Sufficient>> has prefix : Prefix [0..1]   Subsets: identified by:Identifier    

through association: Prefix 

An abbreviation that can be used to identify a package.

12.11Class Physical Package  
A physical, technology specific, data schema representing information about a real or possible world.

Direct Supertypes
Package

12.12Association Prefix  
Relationship defining the prefix for a package.

Direct Supertypes
Identification

Association Ends
 has prefix : Prefix [0..1]   Subsets: identified by:Identifier    

An abbreviation that can be used to identify a package.

 prefix of : Package [1]   Subsets: identified by:Identifier    

An abbreviation for a package.
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12.13Class Prefix  <<Value>>
A technical abbreviation for a package.

Direct Supertypes
Unique Text Identifier

Associations
 <<Sufficient>> prefix of : Package [1]   Subsets: identifies:Identifiable Entity    

through association: Prefix 

An abbreviation for a package.

12.14Association Scope of Reference  
Relationship defining internal or external context that are referenced by a lexical scope using a lexical reference.

Association Ends
 Referenced scope : Context [1]   Subsets: identifies:Identifiable Entity    

A referenced context, potentially in another model, that provides visibility to the elements in that context.
[FUML] importedPackage
[OWL] directlyImports (implies "Include")

 referenced by : Lexical Reference [*]   Subsets: identifies:Identifiable Entity    

References to a context.

12.15Association Scope Reference  
Relationship defining references for a scope.

Association Ends
 references : Lexical Reference [*]   Subsets: identifies:Identifiable Entity    

A reference providing visibility of a lexical scope to an internal or external context.

 extends scope : Lexical Scope [1]   Subsets: identifies:Identifiable Entity    

A lexical scope that is extended by a lexical reference.
[FUML] importingNamespace

12.16Association Statement  
Relationship defining the set of elements defined within and asserted by a lexical scope.

Direct Supertypes
Definition

Association Ends
 states : Thing [*]   Subsets: identifies:Identifiable Entity    

<states> combines <defines> with <has assertion> to both define and assert an element within a lexical scope. 
<states> provides a more "structural" organization of concepts that are both defined and asserted in the same structure.

<states> is a convenience for the common case where assertion and lexical containment are combined.
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 stated by : Lexical Scope [0..1]   Subsets: identifies:Identifiable Entity    

<stated by> is a lexical scope that both defines and asserts a model element.
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13SMIF Conceptual Model::Mapping
Mapping rules define how data represents concepts or how different data representations are related.

13.1Diagram: Facades

u. Facades
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13.2Diagram: Mapping Rules

v. Mapping Rules

 

13.3Class Computed Facade  
A facade that is computed by calling external methods.

Direct Supertypes
Facade

Operations
 public push ()

An operation called to evoke the behavior associated with a new facade element being created or modified. Push asserts 
the more concrete type based on a reference type.

 public pull ()
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An operation called to evoke the behavior associated with a facade representing existing elements. Pull asserts the 
reference type based on a more concrete type.

13.4Association Concrete Map End  
Relationship to the more concrete end of a match rule.

Association Ends
 concrete end : Match End [1]   Subsets: identifies:Identifiable Entity    

One end of a mapping, to be used for more concrete end.

 match from : Match Rule [0..1]   Subsets: identifies:Identifiable Entity    

Mapping rule owning a "concrete" end.

13.5Association Concrete Pattern Body  
Relationship between a mapping and a pattern of the more concrete concepts to be mapped.

Association Ends
 concrete focus : Pattern Variable [1]   Subsets: identifies:Identifiable Entity    

The variable or variables that form the basis for the portion of the pattern for the more concrete (physical) 
model. The concrete portion of the pattern is derived from the transitive closure of all variables reachable from the 
pattern variable via characteristics, associations or relationships.
When a pattern matching the set of concrete variables is created or altered the mapping "fires" and the reference pattern 
is asserted.
The qualification of the referenced variable is constrained to be ""select".

 concrete mapping : Mapping [0..1]   Subsets: identifies:Identifiable Entity    

Mapping for which a more concrete pattern is defined.

13.6Class Facade  
An intermediary data type used to hold common mappings. Facades may be computed and/or have mapping rules.

Direct Supertypes
Record Type

13.7Association Map Rule Type Assertion  
Relationship defining more concrete types that shall be asserted for an end of a match rule.

Association Ends
 asserted type : Type [*]   Subsets: identifies:Identifiable Entity    

Type that will be asserted for the end that is more concrete than the defined type of a property or relationship. 
e.g. a unit type.

 asserted by : Match End [*]   Subsets: identifies:Identifiable Entity    

Map rule and that asserts a type
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13.8Association Mapped variable  
Relationship defining the property that is the source or target of a mapping

Association Ends
 maps variable : Pattern Variable [1]   Subsets: identifies:Identifiable Entity    

Variable that defines a set of elements to map to the other side of the mapping rule. The set of elements shall be 
those bound to the property on evaluation of the mapping.

 maps to : Match End [*]   Subsets: identifies:Identifiable Entity    

Map rule end for a property

13.9Class Mapping  
A mapping is a rule based on a pattern that defines how different representations of the same things correspond. There 
are two "sub patterns", defined by the concrete and reference variables and other variables reachable from them via 
characteristics, associations and relationships. These sub-patterns are matched (made to correspond) using "Match 
Rules"
Patterns define a set of related elements to be mapped based on two distinguished variables, the "concrete body" and the 
"reference body".
Types in a "concrete" body may be defined to be a representation (data about) a concept in a "reference" pattern.
Match rules define how elements in each of the sub-patterns are mapped, bidirectionally.
A mapping utilizing more specific types subsumes maps for more general types.
Note that the roles of "concrete" and "reference" may or may not reflect different levels of abstraction and in some cases 
the choice may be arbitrary.

Direct Supertypes
Pattern, Rule

Attributes
 strength : Assertion Strength

Strength defines what will cause a rule to be considered for being asserted (firing). 

Associations
  concrete focus : Pattern Variable [1]   Subsets: owns variable:Pattern Variable    

through association: Concrete Pattern Body 

The variable or variables that form the basis for the portion of the pattern for the more concrete (physical) 
model. The concrete portion of the pattern is derived from the transitive closure of all variables reachable from the 
pattern variable via characteristics, associations or relationships.
When a pattern matching the set of concrete variables is created or altered the mapping "fires" and the reference pattern 
is asserted.
The qualification of the referenced variable is constrained to be ""select".

  has map rule : Match Rule [*]   Subsets: constrained by:Rule   states:Thing    
through association: Match Rules 

Map rule that is asserted by a mapping.

  reference focus : Pattern Variable [1]   Subsets: owns variable:Pattern Variable    
through association: Reference Pattern Body 

The variable or variables that form the basis for the portion of the pattern for the more abstract/reference 
(conceptual) model. The reference portion of the pattern is derived from the transitive closure of all variables reachable 
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from the pattern variable via characteristics, associations or relationships.
When a pattern matching the set of reference variables is created or altered the mapping "fires" and the concrete pattern 
is asserted.
The qualification of the referenced variable is constrained to be ""select".

13.10Class Match End  
One end of a mapping from one thing to another that may be qualified with a condition.
The set of elements to be mapped is the union of the sets of all mapped types and mapped variables that conform to the 
condition.
Match rules are constrained to apply to only conforming types or types that represent the mapped ends (as specified by a 
representation rule). 
Representation rules applied to a supertype apply to a subtype unless a more specific representation rule is specified for 
the corresponding types.

Direct Supertypes
Computed, Conditional

Associations
  asserted type : Type [*] 

through association: Map Rule Type Assertion 

Type that will be asserted for the end that is more concrete than the defined type of a property or relationship. 
e.g. a unit type.

  maps variable : Pattern Variable [1] 
through association: Mapped variable 

Variable that defines a set of elements to map to the other side of the mapping rule. The set of elements shall be 
those bound to the property on evaluation of the mapping.

13.11Class Match Rule  
A rule that the 2 ends represent the same things or information about a thing.
Redundant mappings are ignored and identity is preserved across all mappings.

Direct Supertypes
Rule

Attributes
 coerce : Boolean

Where <coerce> has a value of TRUE  a map rule will be evaluated even if the <reference end> is not type compatible 
with the <concrete end> type.
Where <coerce> is FALSE or unstated a map rule will be evaluated only if the <reference end> is type compatible with 
the <concrete end> type.
Type compatible shall be defined as one of: Being the same type, <concrete end> being a subtype of <reference end> (as 
defined by a type generalization rule), <concrete end> being a representation of <reference end> (as defined by a 
representation rule).
Representation rules applied to a supertype apply to a subtype.
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Associations
  concrete end : Match End [1] 

through association: Concrete Map End 

One end of a mapping, to be used for more concrete end.

  reference end : Match End [1] 
through association: Reference Map End 

One end of a match rule, to be used for more abstract end.

  map rule of : Mapping [1]   Redefines: constrains:Identifiable Entity   stated by:Lexical Scope    
through association: Match Rules 

Mapping containing a map rule.

13.12Association Reference Map End  
Relationship to the reference end of a match rule.

Association Ends
 reference end : Match End [1]   Redefines: constrains: Identifiable Entity   stated by: Lexical Scope    

One end of a match rule, to be used for more abstract end.

 match to : Match Rule [0..1]   Redefines: constrains: Identifiable Entity   stated by: Lexical Scope    

Mapping rule owning a reference" end.

13.13Association Reference Pattern Body  
Relationship between a mapping and a pattern of the more abstract concepts to be mapped.

Association Ends
 reference focus : Pattern Variable [1]   Redefines: constrains: Identifiable Entity   stated by: Lexical Scope    

The variable or variables that form the basis for the portion of the pattern for the more abstract/reference 
(conceptual) model. The reference portion of the pattern is derived from the transitive closure of all variables reachable 
from the pattern variable via characteristics, associations or relationships.
When a pattern matching the set of reference variables is created or altered the mapping "fires" and the concrete pattern 
is asserted.
The qualification of the referenced variable is constrained to be ""select".

 reference mapping : Mapping [0..1]   Redefines: constrains: Identifiable Entity   stated by: Lexical Scope    

Mapping for which a more abstract pattern is defined.

13.14Association Representation  
More concrete type that represents information about the represented concept of a representation rule.

Association Ends
 represented by : Type [1]   Redefines: constrains: Identifiable Entity   stated by: Lexical Scope    

The representation of a concept in a more specific form

 represents rule : Representation Rule   Redefines: constrains: Identifiable Entity   stated by: Lexical Scope    
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Rule defining a representation of a type.

13.15Class Representation Rule  
A representation rule states that the <represented type> has a representation defined by the <represented by> type.
Representation rules are used to filter Map Rules such that only represented concepts may be mapped.
A representation is usually complimented with one or more mapping rules.

Direct Supertypes
Conditional Rule

Attributes
 map all : Boolean

Specifies a direct mapping between instances of the types in both directions.
<map all> is equivalent to a mapping with a rule mapping properties of each type but is lower precedence than other 
mappings - if types have a more specific map it will apply first.

Associations
  represented by : Type [1] 

through association: Representation 

The representation of a concept in a more specific form

  represented type : Type [1..*] 
through association: Represented Concept 

A more general or abstract concept that is being represented.

13.16Association Represented Concept  
More abstract type that is <represented by> a more concrete type of a representation rule.

Association Ends
 represented type : Type [1..*] 

A more general or abstract concept that is being represented.

 concept rule : Representation Rule 

Rule defining a concept that is represented by another, more concrete, concept.

13.16.1 Enumeration Assertion Strength  

Rule strength defines what will cause a rule to be considered for being asserted (firing). 
package SMIF Conceptual Model::Mapping
public enum Assertion Strength
{Global, Local}

Literals
 Global

The rule will be in effect globally.
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 Local

The rule will only be in effect if required to fulfill another rule.

Known other enumerations
Enumeration Assertion Strength
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14SMIF Conceptual Model::Metadata
Metadata defines data about model elements (their source, definition or trust), which can be differentiated from model 
elements about the subject domain.

14.1Diagram: Metadata

w. Metadata
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14.2Association Assertion Statement  
Relationship defining the original statement, speech act or information artifact that asserted something in a model.

Direct Supertypes
Metadata relationship

Association Ends
 was stated in : Statement [*] 

Metadata representing the speech act, document or other record where a statement captured in a model was 
made.
[OWL] rdfs:isDefinedBy

 resulted in : Identifiable Entity 

Statement made in a statement by an information source.

14.3Class Definition  
An informal or natural language definition of a something and potentially a reference to external definitions.
A Definition may be in the context of a natural language to scope the language it is expressed in.

[ISO 1087] definition: representation of a concept (3.2.1) by a descriptive statement which serves to differentiate it from 
related concepts

[FUML] Comment (where body corresponds with "text definition").

Direct Supertypes
Metadata

Attributes
 text definition : Text

Text describing a something in natural language. The language may be indicated by a context of the definition.
[OWL] rdfs:comment

 external reference : IRI Identifier
A reference to an external information resource that further defines something.
[FIBO] ReferenceDOcument

 external term : Term
Specific term in an external resource that further defines something.

 summary description : Text
A short description of something.

Associations
 <<Annotation Property>> defines : Identifiable Entity [1]   Redefines: metadata about:Identifiable Entity    

through association: Definition Relationship 

Some thing described by a definition.
[FIBO] defines
[FUML]annotatedElement
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14.4Association Definition Relationship  
Relationship between a thing and its definitions.

Direct Supertypes
Metadata relationship

Association Ends
 defines : Identifiable Entity [1]   Redefines: metadata about: Identifiable Entity    

Some thing described by a definition.
[FIBO] defines
[FUML]annotatedElement

 defined by : Definition [*]   Redefines: metadata about: Identifiable Entity    

An informal description of something.
[FIBO] hasDefinition
[UML] comment
[FUML] ownedComment

14.5Class Information Source  <<Role>>
Metadata defining the origin or provenance of a set of statements in a model or data.
Note that the source could be a human, an organization, a mapping or other automated processes.

Direct Supertypes
Actual Entity, Metadata

Associations
 <<Annotation Property>> made statement : Identifiable Entity [1..*]   Subsets: metadata about:Identifiable 
Entity    

through association: Source of Information 

Metadata representing statements made by an authoritative source. 
Sources may be people, organizations, documents, information systems, etc. 

14.6Class Metadata  
Information about the source, provenance or origin of information. Metadata may be a managed entity, providing for 
provenance.
[NIEM] MetadataType

Direct Supertypes
Record

Associations
 <<Annotation Property>> metadata about : Identifiable Entity [*]   Subsets: about:Identifiable Entity    

through association: Metadata relationship 

The subject of metadata, the entity described by the metadata.
[OWL] annotationSubject of Annotation Assertion
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14.7Association Metadata relationship  
Relationship between something and metadata about that thing; data about data.
[OWL] AnnotationAssertion

Association Ends
 metadata about : Identifiable Entity [*]   Subsets: about:Identifiable Entity    

The subject of metadata, the entity described by the metadata.
[OWL] annotationSubject of Annotation Assertion

 has metadata : Metadata [*]   Subsets: about:Identifiable Entity    

Metadata associated with (data about the information concerning) the subject entity.
[OWL] AnnotationProperty, annotationValue of Annotation Assertion

14.8Association Record of an Entity  
Relationship between a thing and records (or information) about that thing.
Note that in SMIF, things refer to the actual thing they represent, not data about it (unless the type is a record, in which 
case the "thing" is the data). This relationship recognizes that both a thing and data about the thing are things.

[IDEAS] describedBy: A representedBy that asserts that a Description describes a Thing.

Association Ends
 about : Identifiable Entity [*]   Subsets: about:Identifiable Entity    

The thing described by a record.

 has record : Record [*]   Subsets: about:Identifiable Entity    

A record about something.

14.9Association Source of Information  
Relation defining an entity making a statement represented within a model. E.g. the person or organization that made a 
statement.

[ISO 1087] source identifier: information in a terminological entry (3.8.2) which indicates the source documenting the 
terminological data (3.8.1)

Association Ends
 made statement : Identifiable Entity [1..*]   Subsets: about:Identifiable Entity    

Metadata representing statements made by an authoritative source. 
Sources may be people, organizations, documents, information systems, etc. 

 has authoritative source : Information Source [*]   Subsets: about:Identifiable Entity    

Metadata representing the authority behind a statement - who or what made a statement captured in a model.
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14.10Class Statement  
Statements provide metadata as to the source of information - who or what said it.
This source of the information may be captured using "InformationSource" metadata about the metadata.

[ISO11404] provision that conveys information

Direct Supertypes
Metadata

Attributes
 statement date and time : Value Type

Metadata representing the date and time the statement was made or modified.

 version : Value Type
Metadata representing an identifier for a version of information.

 transaction id : Value Type
Identifier for an act or transaction creating or modifying information.
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15SMIF Conceptual Model::Patterns
Patterns are templates for structures or compositions of things that may then be expressed as instances of the pattern.

15.1Diagram: Patterns

x. Patterns
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15.2Class Computed  

Attributes
 computation : Expression Node [0..1]

<computation> provides an expression that computes a value for the  variable based on the expression applied to the 
current context.. 

15.3Association Exclusion  

Association Ends
 excluded by : Pattern Variable [*]   Subsets: about:Identifiable Entity    

 excludes : Pattern Variable [*]   Subsets: about:Identifiable Entity    

15.4Class Expression Variable  
An expression variable defines the value of the variable as computed by <computation>. Note that expression variables 
are not always able to be asserted or reversed and may therefore not provide for bi-directional mapping patterns. Any 
ability to assert or reverse a computation is implementation specific.

Direct Supertypes
Computed, Pattern Variable

15.5Class Focus Variable  
A property variable of a pattern representing the extent of the subject type within the context of the owning pattern.
The value of qualification shall be "Select".
The <has type> of the variable is asserted be the same as the subject type of the pattern.

Direct Supertypes
Type Pattern Variable

15.6Association Match Rules  
Relationship defining the match rules for a mapping.

Direct Supertypes
Rule Constrains, Statement

Association Ends
 has map rule : Match Rule [*]   Subsets: about:Identifiable Entity    

Map rule that is asserted by a mapping.

 map rule of : Mapping [1]   Subsets: about:Identifiable Entity    

Mapping containing a map rule.

120 Semantic Modeling for Information Federation (SMIF) 0.9



15.7Class Part Variable  
A pattern property variable representing a part of the subject type. Additional relations and rules may be made about the 
part. A type with parts is by its nature a composition.

Direct Supertypes
Type Pattern Variable

Attributes
 is boundary part : Boolean [0..1]

True if the property is on the boundary of the pattern and connectible (may have relationships) external to the pattern. 
e.g. "Port"

15.8Class Pattern  <<Intersection>>
A pattern represents a set of assertions true about individuals or sets of individuals qualified by pattern properties. All 
propositions asserted or negated by a pattern (as a context) are considered "templates" where identity is not required to 
match.
 
The structure of the pattern is defined by the properties and asserted (sub) situations (including relationships) that are 
asserted by the pattern.

In many cases the relationships and rules defined for a pattern will reference pattern properties. These relationships will 
hold for instances of the pattern where things are bound to the pattern properties.

[DTV] general situation kind: situation kind that is not an individual situation kind. A situation kind is a general situation 
kind if it can be exemplified by more than one Event in some possible world, even when it cannot have more than one 
Event in the possible world chosen to be the universe of discourse.

[UML] StructuredClassifier. Also Similarity with TemplateSignature 

[OWL] May be used to represent Class Expressions

Direct Supertypes
Lexical Scope, Property Owner, Situation, Situation Type

Associations
 <<Sufficient>> owns variable : Pattern Variable [*]   Subsets: states:Thing      Redefines: has property:Property 
Type    

through association: Pattern Variables 

A variable property defined within the context of a pattern that is used as part of the patterns definition.
[UML] ownedAttribute

  satisfied by : Pattern Match [*] 
through association: Pattern Matches 

Pattern match that satisfies a pattern.

15.9Association Pattern Bindings  

Association Ends
  : Variable Binding [*] 
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  : Pattern Match [1] 

15.10Class Pattern Match  
A pattern match provides the corespondents between a pattern and the situations it matches using variable bindings. 
A pattern match implies and proves that the pattern <categorizes> the situation.
The matched pattern <states> any consequences of the matching, such as the pattern <categorizes> the pattern instance.

 Pattern Match

Direct Supertypes
Actual Situation

Associations
  : Variable Binding [*]   Subsets: states:Thing    

through association: Pattern Bindings 

  satisfies : Pattern [1] 
through association: Pattern Matches 

Pattern that is satisfied by a "Pattern Match" based on a set of "Variable Bindings".

  matches : Situation [1] 
through association: Situation Matches 

The situation qualified as matching the <satisfies> pattern based on the set of "Variable Bindings" stated.
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15.11Association Pattern Matches  

Association Ends
 satisfies : Pattern [1] 

Pattern that is satisfied by a "Pattern Match" based on a set of "Variable Bindings".

 satisfied by : Pattern Match [*] 

Pattern match that satisfies a pattern.

15.12Class Pattern of Type  
A pattern of type defines a set of properties and relationships that must hold true for all instances of a type. Where the 
pattern includes parts, the subject type is a composition.
Patterns augment the semantics of th subject type in the context of the pattern.

Direct Supertypes
Pattern

Associations
 <<Restriction>> : Type Pattern Variable   Subsets: owns variable:Pattern Variable    

 <<Sufficient>> subject type : Type [1]   Redefines: holds within:Context    
through association: Subject of Pattern Relationship 

The type which is the context of a pattern of type. The pattern is "about" the subject type.

15.13Class Pattern Variable  
A pattern variable is a property of a pattern that provides a contextual property within that pattern for rules and 
relationships to be bound to.
A pattern variable is a placeholder for all or a subset of the instances of the variables type.
Properties of an association or relationship may be bound to a pattern variable where the type of the pattern variable is 
compatible with the type of the relationship's property type.

[UML] Similarity with TemplateParameter
[CL] Functional Term

Direct Supertypes
Conditional, Owned Property Type

Attributes
 qualification : Variable Qualification [1]

<qualification> defines the behavior of an element with respect to a pattern - how the variable impacts the selection, 
evaluation or assertion of the pattern.

 explicit : Boolean
If true, Element must be explicitly asserted as the indicted type, not derived or inferred from a supertype or super 
property.

Associations
 <<Restriction>> : Variable Binding [*]   Redefines: has binding:Property Binding    
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 <<Sufficient>> has owning pattern : Pattern [1]   Redefines: property of:Type   stated by:Lexical Scope    
through association: Pattern Variables 

Pattern owning a pattern variable.

  has subset : Pattern [1]   Redefines: property of:Type   stated by:Lexical Scope    
through association: Subsetting 

Subsets of the variable.

  maps to : Match End [*] 
through association: Mapped variable 

Map rule end for a property

  subsets : Match End [*] 
through association: Subsetting 

Variable that a subset variable subsets. The subset variable shall be populated by a subset of the <subsets> 
variable based on the type and constraints of the subset variable.

  excluded by : Match End [*] 
through association: Exclusion 

  excludes : Match End [*] 
through association: Exclusion 

15.14Association Pattern Variables  
Relationship defining variable properties within a pattern.

Direct Supertypes
Statement

Association Ends
 owns variable : Pattern Variable [*] 

A variable property defined within the context of a pattern that is used as part of the patterns definition.
[UML] ownedAttribute

 has owning pattern : Pattern [1] 

Pattern owning a pattern variable.

15.15Class Proposition Variable  
A proposition variable utilizes some proposition (e.g. relationships) as a part of the definition of a pattern, it extends a 
basic proposition in that it adds properties to determine the effect the assertion has on pattern instances.
A Proposition Variable is a lexical scope context that <asserts> or <negates> other propositions qualified by <has 
strength> and <explicit>. As a lexical scope it may "own" the asserted propositions.
Proposition Variable is often used with associations and relationships to define the way pattern properties are related to 
other pattern properties or actual entities.
For a pattern associations, [UML] Connector. (type = has type). Each ConnectorEnd corresponds with a Structured 
Property Binding.

Direct Supertypes
Pattern Variable

Associations
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  qualifies : Proposition [1] 
through association: Qualified Proposition 

15.16Association Qualified Proposition  
Association defining exactly one proposition (such as an association) qualified by a qualified proposition variable.

Association Ends
 qualifies : Proposition [1] 

 qualified within : Proposition Variable [0..1] 

15.17Association Situation Matches  

Association Ends
 matches : Situation [1] 

The situation qualified as matching the <satisfies> pattern based on the set of "Variable Bindings" stated.

 matched by : Pattern Match [*] 

Pattern matches that match the subject situation.

15.18Association Subject of Pattern Relationship  
Relationship defining the subject pattern of a type specific pattern.

Direct Supertypes
Assertion

Association Ends
 asserts pattern : Pattern of Type [0..*] 

A pattern asserted for all instances of a type. Where the pattern includes parts, the type defines a composition.

 subject type : Type [1] 

The type which is the context of a pattern of type. The pattern is "about" the subject type.

15.19Association Subsetting  
In a pattern or mapping rule, defines a variable that represents a subset of another property (or if multiple, their union). 
The subset may be constrained by a more specific type, expressions or required cardinalities.
Subset: Set A is a subset of set B if all of the elements (if any) of set A are contained in set B

Association Ends
 subsets : Pattern Variable [*] 

Variable that a subset variable subsets. The subset variable shall be populated by a subset of the <subsets> 
variable based on the type and constraints of the subset variable.

 has subset : Pattern Variable [*] 

Subsets of the variable.
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15.20Class Type Pattern Variable  
Type Pattern variable is an abstract supertype that provides for a restriction that parts and focus properties must be 
owned by a pattern of a type.

Direct Supertypes
Pattern Variable

Associations
 <<Restriction>> : Pattern of Type   Redefines: has owning pattern:Pattern    

15.21Class Variable Binding  
A variable binding defines a value for a particular variable of a particular owning pattern as part of a pattern match.

Direct Supertypes
Owned Property Binding

Associations
 <<Restriction>> : Pattern Variable [1]   Redefines: bound by:Property Type    

  : Pattern Match [1]   Redefines: stated by:Lexical Scope    
through association: Pattern Bindings 

15.21.1 Enumeration Variable Qualification  

Variable qualification values define the behavior of an element with respect to a pattern - how it impacts the selection, 
evaluation or assertion of the pattern.
package SMIF Conceptual Model::Patterns
public enum Variable Qualification
{Select, Optional, Assert, Negate, Exactly One, There Exists, All}

Literals
 Select

Select is used in query and mapping patterns, all elements of the classified type that match the pattern are selected as 
instances of the pattern.
Select may be considered a qualified "All". Select does not assert the existence of something, it determines the existence 
of a pattern match such that other assertions may be made.
Where a pattern is asserted, "Select" variables shall be asserted.
Relationships between properties with <quantifier>=Select must hold between the selected properties for the pattern to 
be asserted.

 Optional

Optional is used in query and mapping patterns, the property shall be populated as a consequence of the pattern 
matching.
Where a pattern is asserted, "Optional" variables shall not be asserted.
Optional is the default if no qualification is stated.

 Assert
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The property does not impact the selection of the pattern, it is an asserted consequence of the pattern.

 Negate

The property does not impact the selection of the pattern, it is negated consequence of the pattern - it may not exist.

 Exactly One

The existential quantifier limited to exactly one of a potentially larger set of the properties type.

 There Exists

The existential quantifier - at least one of the properties type.  

 All

The universal quantifier - the quantified property is a stand-in for all elements of  the existent of the quantified type

y. Patterns
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16SMIF Conceptual Model::Properties
Properties define the most granular connections between entities or values. Properties may be used as the ends of 
relationships, to represent individual characteristics or as elements of a data structure.

16.1Diagram: Characteristics

z. Characteristics
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16.2Diagram: Properties

aa. Properties

 

16.3Class Annotation Property  
An annotation property is a specialization of property where the referenced elements represent metadata about the 
related proposition, structure or information (or model element) rather than a fact or condition of the domain being 
represented.
For an annotation property, <is of type> describes instances of the structured type for which the property is defined.
Typical uses of annotations include provenance of information, when a record was created, etc.
[ISO11404] annotation: descriptive information unit attached to a datatype, or a component of a datatype, or a procedure 
(value), to characterize some aspect of the representations, variables, or operations associated with values of the 
datatype

Direct Supertypes
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Characteristic Type

16.4Association Bound Individual  
Relationship defining the thing bound to a subject based on a bound property - the "object" of the property binding.

Association Ends
 binds : Thing [1]   Redefines: stated by: Lexical Scope    

The thing bound to a property in a specific situation. E.g. if the weight of truck-XYZ is 4500 LBS, the bound 
individual would be "4500 LBS".
[FUML] value
[OWL] rdf:object

 bound in : Property Binding [*]   Redefines: stated by: Lexical Scope    

Bindings in which a thing participates.

16.5Association Bound Property  
Relationship defining the property type that defines the semantics of a property binding. E.g. if the weight of truck-XYZ 
is 4500 LBS, the bound property could be "has weight".

Direct Supertypes
Extent of Type

Association Ends
 has binding : Property Binding [*]   Redefines: stated by: Lexical Scope    

Bindings referencing a property.

 bound by : Property Type [1]   Redefines: stated by: Lexical Scope    

The property a binding binds a thing to.
[FUML] definingFeature
[OWL] rdf:predicate

16.6Association Bound Subject  
Relationship defining the subject of a bound property. Where the subject is a relationship, the relationship becomes 
transparent and the applicable subject(s) are the other ends of the relationship. E.g. if the weight of truck-XYZ is 4500 
LBS, the bound subject would be Truck-XYZ".

Association Ends
 has binding : Property Binding [*]   Redefines: stated by: Lexical Scope    

Bindings asserted for properties within a situation.

 bound to : Identifiable Entity [1]   Redefines: stated by: Lexical Scope    

The subject of a property binding.
[FUML] owningInstance (note that in SMIF the owner and subject may not be the same). Where the are the same, the 
semantics are the same as FUML.
[OWL] rdf:subject
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16.7Class Characteristic Binding  
A characteristic of a specific thing, e.g. the color of Pump-1234 in the <bound to> entity. A characteristic is a "first 
class" element and may participate in relationships and have annotations.

[IDEAS] measureOfIndividual: A typeInstance that asserts an Individual is an instance of a Measure - i.e. the Individual 
"has" a property corresponding to the Measure.

[ISO 1087] characteristic: abstraction of a property of an object (3.1.1) or of a
set of objects

[Guizzardi]  quality(x) =def !U qualityUniversal(U)  (x::U)∃ ∧

[DOLCE] Quality

Direct Supertypes
Actual Situation, Property Binding

Associations
 <<Restriction>> : Characteristic Type   Redefines: bound by:Property Type    

16.8Class Characteristic Type  
A kind of characteristic a type of thing may have, e.g. paint may have a color. Characteristic type is the type of 
characteristic bindings which are "first class" elements and may participate in relationships and have other 
characteristics.

[IDEAS] Property: An IndividualType whose members all exhibit a common trait or feature. Often the Individuals are 
states having a property (the state of being 18 degrees centigrade), where this property can be a CategoricalProperty 
(qv.) or a DispositionalProperty (qv.).

[ISO 1087] type of characteristics: category of characteristics (3.2.4) which serves as the criterion of subdivision when 
establishing concept systems. NOTE The type of characteristics colour embraces characteristics (3.2.4) being red, blue, 
green, etc. The type of characteristics material embraces characteristics made of wood, metal, etc.

[FIBO] Simple Property: Simple Properties are assertions about things in a class, which may be framed in terms of some 
simple type of information. 

[Guizzardi]  qualityUniversal(U) 

[DOLCE] Quality Type

[OWL] rdf:Statement

[UML] Property

Direct Supertypes
Property Type, Situation Type

Associations
 <<Restriction>> : Characteristic Binding   Redefines: has binding:Property Binding    
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16.9Class Owned Property Binding  
An owned property binding defines a value for a particular property of a particular owning property type (or structure).
Similar to an OWL triple, an owned property binding does not have independent identity.
Constraint: Each owned property binding must be <bound by> an owned property type that is owned by the <has type> 
owned type of the <bound to> property owner.

Owned property type is abstract and not intended to directly represent semantic elements.

Direct Supertypes
Property Binding

Associations
 <<Restriction>> : Owned Property Type [1]   Subsets: bound by:Property Type    

A structure property binding may bind a characteristic.

 <<Restriction>> : Property Owner [1]   Redefines: bound to:Identifiable Entity   stated by:Lexical Scope    

16.10Class Owned Property Type  
An owned property type is a property definition defined as a composite part of an association type - most often used in 
data structures and relationships. Association property types are the types of association property bindings. Also known 
as "association end".

[FIBO] Relationship Property
[FUML] memberEnd (of association) Property

Direct Supertypes
Property Type

Associations
 <<Restriction>> : Owned Property Binding [*]   Redefines: has binding:Property Binding    

 <<Restriction>> : Property Owner Type [1]   Redefines: stated by:Lexical Scope   property of:Type    

16.11Association Properties Relationship  
Relationship defining the set of properties defined for a type.
Where the <property of> type is a relationship type, the "subject" of the property is the other ends (properties) of the 
relationship.
Where the <property of> type is not a relationship, the subject of the property is the <property of> type.

Association Ends
 has property : Property Type [*]   Redefines: stated by: Lexical Scope   property of: Type    

A property of a structured type such that there may be bindings of a thing to instances of the structured type 
with reference to the property which defines the semantics of the bound thing withing the context of the structure.
[FUML] feature
[UML] memberEnd. attribute (of classifier).

 property of : Type [0..1]   Redefines: stated by: Lexical Scope   property of: Type    

Type for which a property is relevant. The domain of the property. 
<property of> excludes "Owned Property Type" and ("Association Type" that is not "Relationship Type")
[FUML] featuringClassifier
[OWL] Domain

Semantic Modeling for Information Federation (SMIF) 0.9 133



16.12Class Property Binding  
A property value binding binds a particular thing (the value) to a situation based on a defined property.

Where <binds> is an expression evaluation, the property value shall evaluate to the evaluation of the expression.

Where <binds> is a property, the property value shall be the property values bound to that property in <bound to> 
situation.

The bound to thing must conform with the <is of type> type of the property. If the bound individual conforms to the 
"requires type" of the property, the <is of type> of the bound thing will be asserted.

The type of the <bound to> structure must (directly or indirectly) have the type the <bound by> properties <property 
of> type.

[FUML] Slot (Noting that in SMIF the binding may or may not be owned by the subject, depending on the subtype of 
property).

[CL] Binding: 

[OWL] Union(ObjectPropertyAssertion, DataPropertyAssertion, AnnotationAssertion), RDF Triple
=Note: RDF Triples do not have identity where as some subtypes of SMIF:Property Type do have identity and are 
therefor statements.

Direct Supertypes
Thing

Associations
  binds : Thing [1] 

through association: Bound Individual 

The thing bound to a property in a specific situation. E.g. if the weight of truck-XYZ is 4500 LBS, the bound 
individual would be "4500 LBS".
[FUML] value
[OWL] rdf:object

  bound by : Property Type [1]   Redefines: has type:Type    
through association: Bound Property 

The property a binding binds a thing to.
[FUML] definingFeature
[OWL] rdf:predicate

  bound to : Identifiable Entity [1] 
through association: Bound Subject 

The subject of a property binding.
[FUML] owningInstance (note that in SMIF the owner and subject may not be the same). Where the are the same, the 
semantics are the same as FUML.
[OWL] rdf:subject
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16.13Class Property Owner  
Property Owner is an abstract element for anything that may own a set of property bindings. This element is abstract and 
not intended to directly represent domain concepts. Subtypes of property owner provide semantic interpretation.

Direct Supertypes
Thing

Associations
 <<Restriction>> : Owned Property Binding [*]   Subsets: states:Thing      Redefines: has binding:Property 
Binding    

 <<Sufficient>><<Restriction>> : Property Owner Type [1..*]   Redefines: has type:Type    

16.14Class Property Owner Type  
A type of Property Owner (See Property Owner for details) which defines a set of "Owned Property Types" which are 
the types of owned property bindings.
Property owner is abstract and not intended to directly represent semantic elements.

Direct Supertypes
Type

Associations
 <<Sufficient>><<Restriction>> : Property Owner [*]   Redefines: categorizes:Thing    

 <<Restriction>> : Owned Property Type [*]   Subsets: states:Thing      Redefines: has property:Property Type    

16.15Class Property Type  
A property type defines the way in which instances of a type participate in (or, are involved in) instances of another type 
(including relationships). Sometimes called a variable, argument or role.
In a conceptual model the terms associated with a property kind are typically "verb phrases" defining how instances of 
the involved type participate in the situation or relationship.
In a record (data structure) the property is a "slot" of a record and may have a term which is a noun or verb phrase.
So that constraints of a type flow to relationships involving that type: All propositions that hold within a type referenced 
by <is of type> hold within the structured type referenced by <property of>. I.e. the structured type is in the context of 
the types of its properties.
In a function, a property is a function argument.

[Guizzardi] MomentUniversal

[FUML] Parameter where owner is operation. Otherwise Property.

[UML] Property. All typed elements in SMIF are Property Types. 

[CL] Operator: distinguished syntactic role played by a specified component within a functional term

[OWL] rdf:Property, ObjectUnionOf(owl:ObjectProperty, oe;DatatypeProperty). 

Direct Supertypes
Type

Associations
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  is of type : Type [*] 

A type of instances bound to a property. Also known as the "range" of a property.
If asserted the property rule shall be owned and asserted by the properties <property of> type.

[OWL] Range

 <<Restriction>> : Property Constraint [*]   Subsets: constrained by:Rule    

  property of : Type [0..1] 
through association: Properties Relationship 

Type for which a property is relevant. The domain of the property. 
<property of> excludes "Owned Property Type" and ("Association Type" that is not "Relationship Type")
[FUML] featuringClassifier
[OWL] Domain
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17SMIF Conceptual Model::Records
A record of the condition of an entity at a point in time - this includes facts, speech acts and DBMS records. Records are 
a kind of information.
Records are typically used in data representations, not conceptual models.

17.1Diagram: Records

bb. Records
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17.2Class Record  
A record of the condition of an entity at a point in time - this includes facts, speech acts and DBMS records. 
Records are typically used in data representations, not conceptual models. Records specialize associations as owners of 
properties.

[IDEAS] A Representation that describes a Thing

Direct Supertypes
Actual Situation, Property Owner

Associations
  about : Identifiable Entity [*] 

through association: Record of an Entity 

The thing described by a record.

 <<Sufficient>><<Restriction>> : Record Type [1]   Subsets: has type:Type    

17.3Class Record Type  
Type of the record of the condition of an entity at a point in time - this includes facts, speech acts and DBMS records. 
A record type may involve variant and invariant types as variables. Those that are enumerated in a "uniqueness 
constraint" are invariant (independent variables) uniquely identify the situation which is the subject of the fact type 
where as the other variables may change over time (dependent variables).
Record types may be grounded in atomic relations by using invariant conditions.
Record types represent typical "data structures".

Direct Supertypes
Property Owner Type, Situation Type

Associations
 <<Sufficient>><<Restriction>> : Record [*]   Redefines: categorizes:Thing    

  about type : Type [0..1] 
through association: Subject of Record Type 

Thing for which a record exists

17.4Association Subject of Record Type  
Relationship defining types of records for another type.

Association Ends
 about type : Type [0..1] 

Thing for which a record exists

 recording types : Record Type [*] 

Record for a thing.
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18SMIF Conceptual Model::Relationships
Relationships are primitive but identifiable conditions that relate other entities through properties of the relationships. 
Relationships have their semantics described by a relationship type. The ends of relationships are defined by "structured 
property type", a relationship may have any number of "ends".
Relationships are first-class "actual" and "temporal" things that exist in their own right. These are known as "external 
relations" in much of the theoretical literature.

18.1Diagram: Relationships

cc. Relationships

Relations are atomic actual situations that bind 2 or more properties as a fact.
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18.2Class Relationship  
A relationship defines a situation involving related things. A relationship may be asserted within a context as true or false 
within that context. Each relationship type has a number of  bindings of which do not change for the life of the 
relationship.. 
A relationship may be true or false within its context (including a timeframe) but is atomic in its truth value.
Relationships may participate in (be bound to) other relationships and as such bindings involving a relationship may 
change over time. That is, relationships are "first class" objects.

[IDEAS] tuple: A relationship between two or more things.
Note: SMIF allows one end of a relationship.

[OWL] An OWL class that is a subclass of SMIF: Relationship

Direct Supertypes
Actual Situation, Property Owner

Associations
 <<Sufficient>><<Restriction>> : Relationship Type [1..*]   Subsets: has type:Type    

18.3Class Relationship Type  
A relationship type defines a type of condition, the relationship, involving related things. A relationship may be asserted 
within a context as true or false within that context. Each relationship type has a number of <has property> "structured 
property type" properties which describe the role of the related things with respect to the relationship, values of which 
uniquely do not change for the life of the relationship. 
A relationship may be true or false within its context (including a timeframe) but is atomic in its truth value.
Relationships may participate in (be bound to) other relationships and as such bindings involving a relationship may 
change over time.  
The terms for properties of a relationship in a conceptual model are typically verb phrases, connecting the relationship 
with the related types.

[FIBO] A kind of Mediating Thing

[IDEAS] TupleType: The Powertype of tuple.

[FUML] Association where memberEnd corresponds with <has property>. Note that SMIF relationships are "first class" 
and may also be considered to correspond to an association class where there are any properties or other relationships 
referencing the subject relationship.

[UML] AssociationClass (note that "end ownership" is meaningless in SMIF).

[Guizzardi2015] Relator: endurants of a special kind, with the power of connecting (mediating) other endurants. Note: 
Guissardi "mediation" corresponds with relationship properties.

Direct Supertypes
Property Owner Type, Situation Type

Associations
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 <<Sufficient>><<Restriction>> : Relationship [*]   Redefines: categorizes:Thing    
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19SMIF Conceptual Model::Rules
Rules define constraints or behaviors that are asserted in specified context.

19.1Diagram: General Rules

dd. General Rules
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19.2Diagram: Property Constraints

ee. Property Constraints

This diagram focuses on rules about properties.
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19.3Diagram: Rules in Context

ff. Rules in Context

This diagram shows how rules are propositions that may be asserted within any context to apply to any other context, 
thus realizing the "open world assumption".
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19.4Diagram: Rules Summary

gg. Rules Summary

This diagram shown a summary of the primary rules.
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19.5Diagram: Type Constraints

hh. Type Constraints

This diagram focuses on rules about types (note that property types are also types).

 

19.6Class Conditional  
Anything with a condition defined by an expression.

Attributes
 condition : Expression Node [0..1]

Condition that must be TRUE for an element to be asserted. All values other than "TRUE" are FALSE.
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19.7Class Conditional Rule  
A rule with a general expression as a condition that applies to what the rule <constrains>. Where asserted, the condition 
must be true.
[UML] Constraint where "context" corresponds with <holds within> and "constrainedElement" corresponds with 
"constrains". "specification" corresponds with "condition".

Direct Supertypes
Conditional, Rule

19.8Class Covering Constraint  
A constraint that the extent (<categorizes> things) of the <constrains> type is equivalent to the union of the extents of 
the <is covered by> types.
[UML] GeneralizationSet with isCovering=TRUE. "constrains" corresponds with the common "general" of each 
Generalization". "is covered by" corresponds with each "special" of each generalization.

Direct Supertypes
Type Constraint

Associations
  is covered by : Type [*] 

through association: Covering Constraint 

A type covered by a covering constraint.

The <constrains> type must be a direct supertype of all <is covered by> types.

19.9Association Covering Constraint  
Relationship defining the types covered by a covering constraint.

Association Ends
 is covered by : Type [*] 

A type covered by a covering constraint.

The <constrains> type must be a direct supertype of all <is covered by> types.

 has covering : Covering Constraint [*] 

Covering constraints of a type.

19.10Class Disjoint  
Disjoint is a rule that the things denoted by what the rule <constrains> do not and may not denote any of the same set of 
things.
When applied to a context (including types) all elements contextualized are included in the set of disjoint individuals.

[FIBO] Mutually Exclusive sets

[IDEAS] PartitionOfSetOfDisjointIndividuals: A FusionOfSetOfIndividuals whose fusioned Type is a 

Semantic Modeling for Information Federation (SMIF) 0.9 147



SetOfDisjointIndividuals.

[UML] [UML] GeneralizationSet with isDisjoint=TRUE. "constrains" corresponds with  "is covered by"  of each 
"special" of each generalization. Note the SMIF does not require that disjoint elements have a common supertype, one 
may be inferred for UML mapping.

[OWL: Union(DisjointClasses, DisjointObjectProperties, DisjointDataProperties, DifferentIndividuals)

Direct Supertypes
Rule

19.11Class Enumerated  
The contextualized elements of the <constrains> context is a closed (enumerated) set, it can not be extended. A.K.A. 
"Closed World Assumption". Elements may not be asserted by any context other than the one specified in <holds 
within>.

[FIBO] Selections of Things
[FUML] Wen constraining a type, corresponds with [FUML] "Enumeration". SMIF enumerations are not limited to 
literals. The "ownedLiteral" corresponds with all elements owned by <holds within>.
[ISO11404] Enumerated: enumerated is a family of datatypes, each of which comprises a finite number of distinguished 
values having an intrinsic order.
[OWL] ObjectUnitionOf( DataOneOf, ObjectOneOf )

Direct Supertypes
Rule

19.12Class Equivalent  
Equivalent is a rule that the things the rule <constraints> denote the same set of things. When applied to a context 
(including types) each thing the context contextualizes is included in the set of equivalent things.

Related to*:  [ISO 1087] synonymy: relation between or among terms (3.4.3) in a given language representing the same 
concept (3.2.1)

Related to*: [ISO 1087] equivalence: relation between designations (3.4.1) in different languages representing the same 
concept (3.2.1)

* SMIF relates concepts, not terms. synonymy may also be represented by multiple terms for the same concept.

[OWL] Union( SameIndividual, EquivalentClasses, EquivalentObjectProperties, EquivalentDataProperties)

Direct Supertypes
Rule

19.13Class Facet Classification Constraint  
A Facet Classification Constraint asserts that the specialized type is "non rigid" with respect to the general (rigid) type - 
that is the <has specific> type may change over the lifetime of instances of the <has general> type. The <has specific> 
type will be inferred to be a Facet. e.g. "Registered voter" is a facet of a person. 

[FIBO] isPlayedBy
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Direct Supertypes
Generalization Constraint

Associations
 <<Sufficient>> : Facet   Redefines: has specific:Type    

19.14Association Generalization  
Relationship defining the general type of a generalization constraint.

[ISO 1087] generic concept: concept (3.2.1) in a generic relation (3.2.21) having the narrower intension (3.2.9)

Association Ends
 has general : Type [1]   Redefines: has specific: Type    

The general type in the Generalization rule.

[ISO 1087] concept (3.2.1) in a generic relation (3.2.21) having the broader intension (3.2.9)

[FUML] General (Where redefines is false or not defined)
[FUML] RedefinableElement.redefinedElement (Where redefines is true)

 has specialization : Generalization Constraint [*]   Redefines: has specific: Type    

Specialization rules for a type.

19.15Class Generalization Constraint  
A Type Generalization Constraint is a taxonomic relationship between a more general <has general> type and a more 
specific <has specific> type. Each instance of the specific type is also an instance of the general type. The specific type 
inherits the properties and rules of the more general type. 
The extent (<categorizes> property) of the specific type is the same as or a subset of the extent of the more general type.
Note that "multiple inheritance" is supported.

[IDEAS] superSubtype: A couple relating two Types which asserts that one type is a subset of the other. 

[ISO 1087] generic relation: genus-species relation relation between two concepts (3.2.1) where the intension (3.2.9) of 
one of the concepts includes that of the other concept and at least one additional delimiting characteristic (3.2.7)

[FIBO] Inheritance

[UML] Generalization

[Guizzardi] (Specialization relation): Let F and G be two universals such that F is a specialization of G. Then, for all w 
 W we have that extw(F)  extw(G)∈ ⊆

[OWL] Union(SubClassOf, SubPropertyOf)

Direct Supertypes
Type Constraint

Attributes
 redefines : Boolean
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Defines the generalization as a redefinition, subsuming the more general type in the definitional context.

Where <redefines> is true the more specific type subsumes the more general type in the definition context. In this case 
the more general and more specific sets are equivalent. A type may be redefined multiple times, as long as it is 
unambiguous which definition applies for a particular instance.

Where <redefines> is false or not defined the more specific type represents a subset of the more general property.

Redefinition is most often used with properties (as defined in UML) but may also be applied to other types.

Associations
  has general : Type [1] 

through association: Generalization 

The general type in the Generalization rule.

[ISO 1087] concept (3.2.1) in a generic relation (3.2.21) having the broader intension (3.2.9)

[FUML] General (Where redefines is false or not defined)
[FUML] RedefinableElement.redefinedElement (Where redefines is true)

  has specific : Type [1]   Redefines: constrains:Identifiable Entity    
through association: Specialization 

The specific type in a generalization rule.
[ISO 1087] generic concept: concept (3.2.1) in a generic relation (3.2.21) having the narrower intension (3.2.9)
[FUML] specific
[ISO11404] A subtype is a datatype derived from an existing datatype, designated the base datatype, by restricting the 
value space to a subset of that of the base datatype whilst maintaining all characterizing operations. Subtypes
are created by a kind of datatype generator which is unusual in that its only function is to define the relationship between 
the value spaces of the base datatype and the subtype.
[OWL] Union( rdfs:subClassOf, SubObjectPropertyOf, SubDataPropertyOf)

19.16Class Multiplicity Constraint  
A Multiplicity constraint constrains the number of bindings <multiplicity of> types (including property types) may have 
in a particular instance of the constrained type. 

For a property type, The number of instances bound to a property for the set of instances bound to <with respect to> 
shall be limited by the minimum and maximum number of the multiplicity. 

For non-property types, the multiplicity shall apply to the extent of the type as described by <classifies>.

[IDEAS] superSubType

[FUML] MultiplicityElement: Note: Multiplicity Constraint constraining a type has semantics included in to UML 
MultiplicityElement.

[OWL] Union(ObjectMaxCardinality, ObjectMinCardinality, ObjectExactCardinality, DataMaxCardinality, 
DataMinCardinality, DataExactCardinality)

Direct Supertypes
Type Constraint
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Attributes
 mininum number : Integer [0..1]

Minimum number in a set as constrained by a multiplicity.
[FUML] MultiplicityElement.lowerValue
[OWL] MinCardinality

 maximum number : Integer [0..1]
Maximum number in a set as constrained by a multiplicity.
[FUML] MultiplicityElement.upperValue
[OWL] maxCardinality

 at once : Boolean = true
When at once is true, the constraint applies for each snapshot in time but not across snapshots (e.g. a car can have at 
most one driver at a time). When at once is false the constraint applies across all time (e.g. a person has exactly one birth 
mother across all time).

 is sufficent : Boolean
One of the set of sufficient conditions that will infer the type designated in <constrains>.

Associations
  with respect to : Type [*] 

through association: Multiplicity Reference 

One or more types or properties that define the "from" side of a multiplicity. 

Where with respect to is undefined and <multiplicity of> is a property, all properties that are <property of> the same 
structured type as <multiplicity of> shall be considered the set of <with respect to> properties.  I.e. all the "other ends" 
of a relationship.

<with respect to> provides for complex multiplicities across n-ary situations, data structures and relationships. 

  multiplicity of : Type [1]   Redefines: constrains:Identifiable Entity    
through association: Multiplicity Target 

The type or property that is the subject of a multiplicity constraint.

19.17Association Multiplicity Reference  
Multiplicity may be defined between things. E.g. there are 2 wheels on a motorcycle. This is most often required where 
relationships have more than 2 ends. 
Multiplicity reference defines the "from" side of such a multiplicity (e.g. the motorcycle).

Association Ends
 with respect to : Type [*]   Redefines: constrains: Identifiable Entity    

One or more types or properties that define the "from" side of a multiplicity. 

Where with respect to is undefined and <multiplicity of> is a property, all properties that are <property of> the same 
structured type as <multiplicity of> shall be considered the set of <with respect to> properties.  I.e. all the "other ends" 
of a relationship.

<with respect to> provides for complex multiplicities across n-ary situations, data structures and relationships. 

 respect of : Multiplicity Constraint [*]   Redefines: constrains: Identifiable Entity    
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Multiplicity constraints using a property or type as a <with respect to> reference.

19.18Association Multiplicity Target  
Relationship defining the type a multiplicity rule applies to. Note that properties are types and may also have 
multiplicity constraints.

Direct Supertypes
Rule Constrains

Association Ends
 multiplicity of : Type [1]   Redefines: constrains: Identifiable Entity    

The type or property that is the subject of a multiplicity constraint.

 has multiplicity : Multiplicity Constraint [*]   Redefines: constrains: Identifiable Entity    

Multiplicity constraint of a type or property.

19.19Class Property Constraint  
Abstract supertype for constraints that constrain properties types.

Direct Supertypes
Rule

Associations
 <<Restriction>> constrains : Property Type [1]   Redefines: constrains:Identifiable Entity    

19.20Class Property Transitivity Constraint  
A transitive property defined by <constrains> interlinks two individuals A and C whenever it interlinks A with B and B 
with C for some individual B. 
For example "larger than" is transitive in that if Joe is larger than Sue and Sue is Larger then Sam, then Joe is larger than 
Sam.
[OWL] TransitionObjectProperty

Direct Supertypes
Property Constraint

19.21Association Property Type  
Relationship defining the type of a property.

Association Ends
 is of type : Type [1]   Redefines: constrains: Identifiable Entity    

A required type of a thing bound to a property.
Note that the type may be inferred based on the value of <prerequisite type>.
[OWL] rdfs:range, 
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 properties of type : Property Type Constraint [*]   Redefines: constrains: Identifiable Entity    

Properties typed by a type

19.22Class Property Type Constraint  
A property type constraint defines the type(s) of a property.
All elements bound to a property must have the type <is of type>. <is of type> may be pre-existing or inferred based on 
the value of <prerequisite type>.
Note that Property Type Constraint is a rule independent of the definition of a property to allow for the type of a 
property to be refined in a more restrictive context.

[FUML] TypedElement.type: Note: A property type constraint applied to a property has the same semantics as a UML 
TypedElement.

[OWL] Union( AllValuesFrom, SomeValuesFrom, DataPropertyRange, ObjectPropertyRange)). <is of type> 
corresponds to rdfs:Range. <constrains>  corresponds to rdfs:Domain (note that in an association type or relationship 
type with two property types, the range will be the domain of the "opposite" property, if any).

Direct Supertypes
Property Constraint

Attributes
 prerequisite type : Boolean

If true, <is of type> is a prerequisite - the bound thing must be of the given type for the property to be bound. A non 
prerequisite type will cause a binding to infer <is of type>, provided all prerequisite types have been satisfied.

Associations
  is of type : Type [1] 

through association: Property Type 

A required type of a thing bound to a property.
Note that the type may be inferred based on the value of <prerequisite type>.
[OWL] rdfs:range, 

19.23Class Rule  
A rule is a proposition that constrains one or more entities by limiting possible conditions or producing some effect.
Note that rules may or may not be defined in the same context that they hold within or constraint. This support the "open 
world assumption" that a rule may be asserted outside of the scope of the rule or what the rule is constraining.

Direct Supertypes
Proposition

Associations
  constrains : Identifiable Entity [*] 

through association: Rule Constrains 

The entity or entities constrained by a rule.  
Where a rule constrains a context, all things contextualized by the context shall be subject to the rule.
Where there are no <constrains> for a rule, the rule applies globally - to the universal context.

  subsumes : Identifiable Entity [*] 
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through association: Rule Subsumption 

When a rule subsumes another the subsumed rule will not apply (fire) if the <subsumed by> rules applies 
(fires).
Where rules are also patterns, a rule may specialize another which will subsume the specialized rule as well as include 
the generalized rule parts as parts of the specialized rule.

  subsumed by : Identifiable Entity [*] 
through association: Rule Subsumption 

When rule is <subsumed by> another the subsumed rule will not apply (fire) if the <subsumed by> rules 
applies (fires).

19.24Association Rule Constrains  
Relationship defining the entity constrained by a rule. Where no constrained entity is specified, all entities are 
constrained with the scope of <holds within> are constrained.

Association Ends
 constrains : Identifiable Entity [*] 

The entity or entities constrained by a rule.  
Where a rule constrains a context, all things contextualized by the context shall be subject to the rule.
Where there are no <constrains> for a rule, the rule applies globally - to the universal context.

 constrained by : Rule [*] 

Rules applying to an entity.

19.25Association Rule Subsumption  
Relationship defining rule subsumption. When a rule subsumes another the subsumed rule will not apply (fire) if the 
<subsumed by> rules applies (fires).

Association Ends
 subsumes : Rule [*] 

When a rule subsumes another the subsumed rule will not apply (fire) if the <subsumed by> rules applies 
(fires).
Where rules are also patterns, a rule may specialize another which will subsume the specialized rule as well as include 
the generalized rule parts as parts of the specialized rule.

 subsumed by : Rule [*] 

When rule is <subsumed by> another the subsumed rule will not apply (fire) if the <subsumed by> rules 
applies (fires).

19.26Association Specialization  
Relationship defining the specific type of a generalization constraint.

Direct Supertypes
Rule Constrains
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Association Ends
 has specific : Type [1] 

The specific type in a generalization rule.
[ISO 1087] generic concept: concept (3.2.1) in a generic relation (3.2.21) having the narrower intension (3.2.9)
[FUML] specific
[ISO11404] A subtype is a datatype derived from an existing datatype, designated the base datatype, by restricting the 
value space to a subset of that of the base datatype whilst maintaining all characterizing operations. Subtypes
are created by a kind of datatype generator which is unusual in that its only function is to define the relationship between 
the value spaces of the base datatype and the subtype.
[OWL] Union( rdfs:subClassOf, SubObjectPropertyOf, SubDataPropertyOf)

 has generalization : Generalization Constraint [*] 

Generalization rules for a type

19.27Class Type Constraint  
A constraint of a type, including Relationships types.

Direct Supertypes
Rule

Associations
  constrains : Type [1]   Redefines: constrains:Identifiable Entity    

19.28Association Unique Set  
Relationship defining the set of properties that uniquely identify an instance of the constrained type.

Association Ends
 has unique : Property Type [1..*]   Redefines: constrains: Identifiable Entity    

The set of involved properties within a type that uniquely identify an individual.

 has uniqueness constraint : Uniqueness Constraint [*]   Redefines: constrains: Identifiable Entity    

Uniqueness constraints for a property.

19.29Class Uniqueness Constraint  
A constraint that, within the <constrains> type the rule applies to, the set of instances bound to the set of types in the 
"has unique" relation must be unique and serves to define the "identity" of each individual. 
Note: Uniqueness may be used to define a "key".
[OWL] HasKey where CE (subject class expression) is <constrains> and <has unique> is 
Union(ObjectPropertyExpression, DataPropertyExpression)

Direct Supertypes
Type Constraint

Attributes
 is primary identity : Boolean

A uniqueness constraint that can be interpreted as a "primary key", the identity of an entity.
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Associations
  has unique : Property Type [1..*] 

through association: Unique Set 

The set of involved properties within a type that uniquely identify an individual.
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20SMIF Conceptual Model::Situations
A situation is a particular configuration of things and their relations including spatial, temporal, and logical connections 
between those things valid over a period of time. Situations form the basis of all complex, time dependent entities.

20.1Diagram: Situations

ii. Situations

 

20.2Class Actual Situation  <<Intersection>>
An actual situation is an individual situation that actually exists, happened in the past or may exist in some possible 
world, not a template or process definition. Such situations must exist for a time interval, however there are no 
constraints on such a time interval - from an instant to the life of the universe.

DTV: Occurrence: state of affairs that is a happening in the universe of discourse
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 Actual Situation

Direct Supertypes
Actual Entity, Situation

20.3Class Situation  
A situation is an identifiable entity composed of an arrangement of entities and the relations between them over a time 
interval. Situations are propositions and may be asserted as true or false in some context.  Situations may change over 
time, unless otherwise constrained. As an identifiable entity, situations may participate in relationships, thus situations 
are "first class" elements in SMIF.

[SBVR] "State of affairs"
[SOWA1999] Nexus

Direct Supertypes
Context, Lexical Scope, Proposition, Temporal Entity

Associations
 <<Sufficient>><<Restriction>> : Situation Type [1..*]   Subsets: has type:Type    

  matched by : Pattern Match [*] 
through association: Situation Matches 

Pattern matches that match the subject situation.

20.4Class Situation Type  
A situation type defines a kind of identifiable arrangement of individuals, assertions and the relations between them over 
a timespan.  As an identifiable entity, situations may participate in other situations and relationships by being bound to 
properties of those situations or relationships with bindings, thus situations are “first class” entities in a SMIF model.
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The roles or behaviors things (any entity or value) may play in a situation are identified as properties of the situation 
type.
Entity types and roles may also be situation types.
Syn. Type of a state of affairs.
A situation type may have properties such that instances, may bind things to structures based on properties.
Things may be bound to a structure (i.e. play a role in the structure) via properties. Things bound to properties of a 
structure may change over time, unless otherwise constrained.

[DTV] situation kind: state of affairs that may or may not happen in some possible world

Direct Supertypes
Entity Type

Associations
 <<Sufficient>><<Restriction>> : Situation [*]   Redefines: categorizes:Thing    
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21SMIF Conceptual Model::Top level
The top level objects provide the foundation for all objects in a SMIF model

21.1Diagram: Top Level

jj. Top Level

Diagram showing summary of top level classes and significant subtypes.
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21.2Class Actual Entity  
An actual entity is an identifiable, temporal and individual person, specific object, process enactment, agreement, etc. 
Actual Entities do not have to be physical, e.i. may denote social constructs. Actual entities are disjoint from types.
A more specific class of actual entity (e.g., Person) is intended to refine the classification of the individual thing.
Individuality (or selfhood) is the state or quality of being an individual; particularly of being separate from other 
individuals and possessing  identity. Actual entities typically have a lifetime and some individuals may change over that 
lifetime. Individuals may have parts that together help define the individual but may change over time. 
"Actual" does not imply current existence.

[ISO 1087] individual concept: concept (3.2.1) which corresponds to only one object 

[UML] Loose correspondence with "InstanceSpecification". SMIF instances are direct instances of their types, there is 
no "indirection" through value specification as their is in UML.

[Guizzardi] (individual concept)

[CL] Individual: one element of the universe of discourse

[DOLCE] Particular: particulars are entities which have no instances

[SOWA1999] Independent. Can be considered "Actuality" when including social constructs in [SOWA1999] Physical.

[OWL] Individual

 Actual Entity Detail

Direct Supertypes
Temporal Entity

21.3Association Assertion  
An assertion relationship between a context and the propositions asserted within that context. The <asserts> proposition 
is asserted (defined as "true") for all things contextualized by the <holds within> context. Assertion of truth is not 
absolute, it is relative to the context. For example, something could be asserted within a context where that entire 
context is asserted to be false.
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Actual Entity DetailActual Entityclass [   ]

Information Source
«Role»

Temporal Entity

«Intersection»
Actual Situation

TypeActual Entity
«Disjoint With»

«Facet Of»



Assertion is transitive.
[CL] Implication
[OWL] Assertion; Any [OWL] Assertion included in a graph (All assertions in an OWL graph are asserted by the graph)

Association Ends
 asserts : Proposition [*]   Redefines: categorizes: Thing    

Proposition that is asserted (must be true) for anything contextualized by a context.
As types are a context, types may assert a proposition for their instances.

 holds within : Context [*]   Redefines: categorizes: Thing    

Context in which a proposition is asserted (required to be true). Anything contextualized by the context is 
subject to the proposition.

21.4Class Context  
A <Context> is a grouping of <contextualizes> things that are related in some way.

A <Context> also <asserts> propositions that hold for all things the context <contextualizes>, thus providing the link 
between an assertion and the set of things asserted. Likewise a context <negates> propositions that are false within the 
context.

Subtypes of <Context>, such as <Type> ascribe more semantics to the context as well as the things it <contextualizes>.

A context provides a binding between a set of propositions and the things those propositions apply to.

[CL] Sort: any subset of the universe of discourse over which some quantifier is allowed to range

[ISO 1087] concept field: unstructured set of thematically related concepts (3.2.1)

[SOWA1999] Mediating
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 Context Detail

Direct Supertypes
Identifiable Entity

Associations
 <<Sufficient>> asserts : Proposition [*] 

through association: Assertion 

Proposition that is asserted (must be true) for anything contextualized by a context.
As types are a context, types may assert a proposition for their instances.

  contextualizes : Thing [*] 
through association: Extent of Context 

The set of things contextualized by a <Context>, or "in" the <Context> and therefor subject to the <asserts> 
propositions of the <Context>.

  negates : Proposition [*] 
through association: Negation 

Proposition that is negatively asserted (must be FALSE) for anything contextualized by a context.
As types are a context, types may assert or negate a proposition for their instances.
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Context DetailContextclass  [  ]

Context

Expression Context

Lexical Reference

Identifiable Entity

System of UnitsNamespace Situation

Proposition

Type

Thing

Expression Context
{subsets in context of}

+evaluates in

0..1 {subsets contextualizes}

+contextualizes

*

Assertion

«Sufficient»
+asserts

*

«Sufficient»
+holds within

*

Extent of Context+in context of

1..*

«Sufficient»
+contextualizes

*

Scope of Reference+Referenced scope

1

+referenced by*



21.5Association Extent of Context  
The association between a context and the set of things contextualized by that context, defining the extent of the context, 
a set.

[ISO 1087] extension: totality of objects (3.1.1) to which a concept (3.2.1)
corresponds

Association Ends
 contextualizes : Thing [*] 

The set of things contextualized by a <Context>, or "in" the <Context> and therefor subject to the <asserts> 
propositions of the <Context>.

 in context of : Context [1..*] 

A <Context> that contextualizes a thing making what it <contextualizes> subject to the propositions referenced 
by <has assertion> of the context.
A thing may be <in context of> one or more context.
[FIBO] hasContext

21.6Class Identifiable Entity  
An identifiable entity is any identifiable thing other than values, this includes individuals, types, axioms, situations, 
speech acts, information structures, etc.
Identifiable entities always have some kind of identity and may have identifiers. Note that identity is an abstraction that 
may have representation in models as any number of identifiers, also known as a "sign".

[OWL] Entity type (Implied in section [OWL] 5.8) as an instance of rdfs:Class
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 Identifiable Entity Detail

Direct Supertypes
Thing

Associations
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Identifiable Entity DetailIdentifiable Entityclass  [  ]

Identifiable Entity

«Relationship»
Facet of Entity

Identifier
«Value»

Expression Context

Information Source
«Role»

Property Binding

Temporal Entity
Property OwnerProposition

Rule

Entity Type

Record

Value

Statement

Metadata

Context

Definition

Name
«Value»

Thing

«Disjoint With»

Prefered Identification

{subsets identified by}

+has preferred

0..1 {subsets identifies}

+preferred for

0..1

Bound Subject

+has binding

*

+bound to

1

Record of an Entity

«Sufficient»
+about

*

+has record

*

Metadata relationship

«Annotation Property»

{subsets has record}

+has metadata

*

«Sufficient»
+metadata about

{subsets about}
*

Identification

«Sufficient»
+identified by

*

«Sufficient»
+identifies

1

Definition Relationship
«Sufficient»

{redefines metadata about}

+defines

1

«Annotation Property»

{subsets has metadata}

+defined by

*

Naming

{subsets identified by}

+has name

*

«Sufficient»

{redefines 
identifies}

+names

1..*

Assertion Statement
«Sufficient»

{subsets metadata about}

+resulted in
«Annotation Property»

{subsets has metadata}

+was stated in

*

{subsets has type}1..* {redefines categorizes}*

Rule Constrains

«Sufficient»
+constrains

*

+constrained by

*

Source of Information

«Annotation Property»
+has authoritative source

{subsets has metadata}

*

«Sufficient»
+made statement

{subsets 
metadata about}

1..*

«Involves»

{redefines categorizes}

+has entity

1+facet bindings for entity*



 <<Sufficient>> was stated in : Statement [*]   Subsets: has metadata:Metadata    
through association: Assertion Statement 

Metadata representing the speech act, document or other record where a statement captured in a model was 
made.
[OWL] rdfs:isDefinedBy

  has preferred : Identifier [0..1]   Subsets: identified by:Identifier    
through association: Prefered Identification 

Default identifier to use for an entity.
Where multiple identifiers are preferred in differing context any method for selecting the most preferred identifier is 
implementation specific and not specified by this standard.
[FUML] NamedElement.name: Note: An Identifier that is <preferred for> an entity is equivalent to the name of a named 
element.

 <<Restriction>> : Entity Type [1..*]   Subsets: has type:Type    

 <<Annotation Property>> defined by : Definition [*]   Subsets: has metadata:Metadata    
through association: Definition Relationship 

An informal description of something.
[FIBO] hasDefinition
[UML] comment
[FUML] ownedComment

 <<Sufficient>> identified by : Identifier [*] 
through association: Identification 

An identifier for an <Entity>.
[FIBO] hasDenotation

 <<Annotation Property>> has metadata : Metadata [*]   Subsets: has record:Record    
through association: Metadata relationship 

Metadata associated with (data about the information concerning) the subject entity.
[OWL] AnnotationProperty, annotationValue of Annotation Assertion

  has name : Name [*]   Subsets: identified by:Identifier    
through association: Naming 

A human meaningful name for an entity.
[FIBO] hasName: that by which some thing is known; may apply to anything

[OWL] rdfs:label

  has record : Record [*] 
through association: Record of an Entity 

A record about something.

  constrained by : Rule [*] 
through association: Rule Constrains 

Rules applying to an entity.

 <<Annotation Property>> has authoritative source : Information Source [*]   Subsets: has metadata:Metadata    
through association: Source of Information 

Metadata representing the authority behind a statement - who or what made a statement captured in a model.
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  has binding : Property Binding [*] 
through association: Bound Subject 

Bindings asserted for properties within a situation.

21.7Association Negation  
An assertion relationship between a context and the propositions negated (FALSE) within that context. The <negates> 
proposition is asserted as FALSE for all things contextualized by the <negated within> context. Assertion or negation of 
truth is not absolute, it is relative to the context. 
[CL] Negation+Implication

Association Ends
 negates : Proposition [*] 

Proposition that is negatively asserted (must be FALSE) for anything contextualized by a context.
As types are a context, types may assert or negate a proposition for their instances.

 negated within : Context [*] 

Context in which a proposition is negated (required to be FALSE). Anything contextualized by the context is 
subject to the proposition.

21.8Class Proposition  
A proposition is statement, or condition with a truth value (true or false) that can be determined or asserted with some 
level of confidence (assessment of confidence being outside of this specification).
All "facts", statements, speech acts, relationships and rules are propositions.
Propositions may be asserted to be true within a context which they <holds within>.
For a situation, the proposition is true if the situation is actual (i.e., takes place, obtains).

[SBVR] the state of affairs is posited by the proposition and if the state of affairs were actual, the proposition would be 
true
[CL] Sentence: unit of logical text which is true or false, i.e. which is assigned a truth-value in an interpretation
[SOWA1999] Proposition
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Proposition DetailPropositionclass  ][  

Identifiable Entity

Context

Situation Rule

Proposition
Assertion

«Sufficient»
+holds within

*

«Sufficient»
+asserts

*



 Proposition Detail

Direct Supertypes
Identifiable Entity

Associations
 <<Sufficient>> holds within : Context [*] 

through association: Assertion 

Context in which a proposition is asserted (required to be true). Anything contextualized by the context is 
subject to the proposition.

  negated within : Context [*] 
through association: Negation 

Context in which a proposition is negated (required to be FALSE). Anything contextualized by the context is 
subject to the proposition.

  qualified within : Proposition Variable [0..1] 
through association: Qualified Proposition 

21.9Class Temporal Entity  
A temporal is anything that has a timespan. Temporal things may have temporal relationships with other temporal things.

Note that relationships defined for [DTV] Time Intervals may be specified for <temporal Entity> but are not specified in 
SMIF. 

[SOWA1999] Continuant

 Temporal Entity Detail

Direct Supertypes
Identifiable Entity
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Temporal Entity

Identifiable Entity

Actual Entity Situation



21.10Class Thing  
Any thing or value that does or may exist in any possible world. Thing is the supertype of all types and may therefore 
participate in unbounded relations.
Instances of Thing are referred to as "a thing" in this model.

[IDEAS] Thing
[OWL] Thing
[ISO 1087] object: anything perceivable or conceivable
[FIBO] Thing
[Guizzardi] Thing
[FUML] Element
[SOWA1999] "T"
[OWL] rdfs:Resource

 Thing Detail

Associations
  defined in : Lexical Scope [1]   Subsets: in context of:Context    

through association: Definition 

Lexical scope defining model elements.
[UML]owner

  in context of : Context [1..*] 
through association: Extent of Context 

A <Context> that contextualizes a thing making what it <contextualizes> subject to the propositions referenced 
by <has assertion> of the context.
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Thing Detailclass Thing  [  ]

Thing

Property Binding

Constant Reference

Identifiable Entity

Lexical Scope

Context

Equality

Type

Value

Statement

{subsets asserts, subsets defines}

+states

* {subsets defined in, subsets holds within}

+stated by 0..1

Extent of Type

«Sufficient»

{redefines 
contextualizes}

+categorizes

* {subsets in context of}

+has type

1..*

Constant Value +referenced by

*

+has value

1

Definition

{subsets in context of}

+defined in

1

«Sufficient»

{subsets 
contextualizes}

+defines

*

Extent of Context +in context of

1..*

«Sufficient»
+contextualizes

*

Equality Constraint +has equality

*

+has equal

1..*

Bound Individual

+bound in *

«Sufficient»
+binds

1



A thing may be <in context of> one or more context.
[FIBO] hasContext

  has type : Type [1..*]   Subsets: in context of:Context    
through association: Extent of Type 

A type that holds for something.
Things may have multiple types and these types may change over time. 
The <categorized> thing satisfies the constraints of the <has type> type.
[FIBO] isClassifiedBy
[OWL] rdf:type

  stated by : Lexical Scope [0..1]   Subsets: defined in:Lexical Scope   holds within:Context    
through association: Statement 

<stated by> is a lexical scope that both defines and asserts a model element.
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22SMIF Conceptual Model::Types
Types provide for ways to categorize anything based on what it is, the roles it plays or the phases it may be in.
Something may be categorized by any number of types (multiple classification assumption).

22.1Diagram: Type-instance

kk. Type-instance
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Type-instancepackage Types  [  ]

Type

Thing

The fundamental type-instance 
relation is a foundation of SIMF.

«Equivalent Property»
{chain = constrained by, has specific}

+has supertype*

Extent of Type

+has type 1..*

«Sufficient»
+categorizes *



22.2Diagram: Types

ll. Types

 

22.3Class Entity Type  
A type of an identifiable entity. All concrete entity instances must have at least one entity type. Entity type may be mixed 
with other types to fully define an entity.

[FUML] Classifier

[Guarino1994] Substantial or Pseudo-Sortal (Substantial being concrete)
[Guizzardi]  A  Rigid Universal.
(Rigid Universal): A universal G is rigid (or modally constant) iff for any w,w  W 3. extw(G) = extw(G)  Putting �∈ �
definitions 4.1 and 4.3 together, we have that for any rigid universal G the following is true 4. ext(G) = extw(G), for all 
w  W A rigid universal is one that applies to its instances necessarily, i.e., in every possible world. Every substance ∈
sortal G is a rigid universal. 
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Thing
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1..*
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*

Assertion
«Sufficient»
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*

«Sufficient»
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*
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+has type
1..*

«Sufficient»

{redefines contextualizes}
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*
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«Sufficient»
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+in context of 1..*
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{subsets has 
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1..*

{redefines 
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[OWL] rdfs:Class (as Entity Type does not include values). However, non=primitive values are typically represented as 
rdfs:Class

Direct Supertypes
Type

Associations
 <<Restriction>> : Identifiable Entity [*]   Redefines: categorizes:Thing    

22.4Association Extent of Type  
The relation between a type and the things that type categorizes, the instances which defines the extent of the type, a set.

[IDEAS] typeInstance: A couple that asserts that a Thing is a member of a Type.

[Guizzardi] (Extension functions): Let W be a non-empty set of
possible worlds and let w  W be a specific world. The extension function extw(G) maps a universal G to the set of its ∈
instances in world w. The extension function ext(G) provides a mapping to the set of instances of the
universal G that exist in all possible worlds, such that ext(G) = U w W w ext (G)∈

[OWL] ClassAssertion

Direct Supertypes
Extent of Context

Association Ends
 categorizes : Thing [*]   Redefines: categorizes: Thing    

The set of things described by a type, the "extent" of the type.
The thing a type <categorizes>  is subject to the <has assertion> propositions of the type.
[FIBO] classifies

 has type : Type [1..*]   Redefines: categorizes: Thing    

A type that holds for something.
Things may have multiple types and these types may change over time. 
The <categorized> thing satisfies the constraints of the <has type> type.
[FIBO] isClassifiedBy
[OWL] rdf:type

22.5Class Intersection Type  
An intersection is a type that has an extent which is the complete intersection of the extents of all supertypes. 
Intersection is a stronger statement than a subtype as a subtype may not be a complete intersection.

[MathWorld] The intersection of two sets A and B is the set of elements common to A and B. This is written A 
intersection B, and is pronounced "A intersection B" or "A cap B." 

Direct Supertypes
Type
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22.6Class Type  
A <Type> is a categorization of any thing based on specific criteria. The specific criteria may or may not be formalized 
in a model.
A <Type> <categorizes> a set of <Thing>s which comprises the "extent" of the type.
A <Type> is a <Context> where the things it <categorizes> are <in the context> of the <Type>.

[IDEAS] Type: A set (or class) of Things. 
[ISO 1087] general concept: concept (3.2.1) which corresponds to two or more objects (3.1.1) which form a group by 
reason of common properties
[FIBO] Classifier: a standardized classification or delineation for something, per some scheme for such delineation, 
within a specified context
[FUML] Type
[CL] Type:: logical framework in which expressions in the logic are classified into syntactic or lexical categories (types) 
and restricted to apply only to arguments of a fixed type
[Guarino1994] Discriminating Predicate
[OWL] Union(rdfs:Class, rdfs:Datatype)

Direct Supertypes
Context, Lexical Scope

Associations
  has supertype : Identifiable Entity [*]   Redefines: categorizes:Thing    

Supertypes(s) of a type as defined by generalization rules.

All statements made about the supertype are true for the subtype. The extent (categorizes) of the subtype  is a subset of 
the extent of the supertype.

Has supertype is a a derived association based on generalization rules.

  categorizes : Thing [*]   Redefines: contextualizes:Expression Context    
through association: Extent of Type 

The set of things described by a type, the "extent" of the type.
The thing a type <categorizes>  is subject to the <has assertion> propositions of the type.
[FIBO] classifies

  has property : Property Type [*] 
through association: Properties Relationship 

A property of a structured type such that there may be bindings of a thing to instances of the structured type 
with reference to the property which defines the semantics of the bound thing withing the context of the structure.
[FUML] feature
[UML] memberEnd. attribute (of classifier).

 <<Sufficient>> asserts pattern : Pattern of Type [0..*]   Subsets: asserts:Proposition    
through association: Subject of Pattern Relationship 

A pattern asserted for all instances of a type. Where the pattern includes parts, the type defines a composition.

  has covering : Covering Constraint [*] 
through association: Covering Constraint 

Covering constraints of a type.

  has specialization : Generalization Constraint [*] 
through association: Generalization 
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Specialization rules for a type.

  has multiplicity : Multiplicity Constraint [*]   Subsets: constrained by:Rule    
through association: Multiplicity Target 

Multiplicity constraint of a type or property.

  properties of type : Property Type Constraint [*] 
through association: Property Type 

Properties typed by a type

  recording types : Record Type [*] 
through association: Subject of Record Type 

Record for a thing.

  has generalization : Generalization Constraint [*]   Subsets: constrained by:Rule    
through association: Specialization 

Generalization rules for a type

22.7Class Union Type  
A Union is a type that has an extent which is the complete union of the extents of all types that specialize the Union. 

[FIBO] Logical Unions

[MathWorld] Given two sets A and B, the union is the set that contains elements or objects that belong to either A or to 
B or to both.  We write A È B 

[OWL] ObjectUnionOf( ObjectUnionOf, DataUnionOf)

Direct Supertypes
Type
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23SMIF Conceptual Model::Values
The values package defines the concepts of values and quantities expressed in units.
 
Values may be differentiated from entities in that values have no independent lifetime or "identity" other than the value 
its self. E.g. the number 5 "just is" and can't be changed. Properties and relations referencing values can, of course, 
change but the values are constant.
The failure to properly express units in data models often results in errors, inefficiencies and risk. Translation and 
federations between models, schema and data sources that is not cognizant of the units used would be even more error 
prone and risky. For example, what does “Speed limit 50” mean? For these reasons the SMIF language provides specific 
support for specifying quantity kinds and unit types in conceptual, logical and physical models. The SMIF mapping 
rules may then perform the appropriate unit conversions.
The foundation of information specification in SMIF at all levels is the type system. Types specified for all properties 
and relations involving values must match the types of the related values. The concepts of units and values as defined in 
"VIM" [JCGM 200-2008] is used as the basis for defining the types used in SMIF to guarantee type safety of quantities 
across different representations. Since many existing models and schema do not include well defined units some effort 
may be required to find and then specify the implicit units based on documentation, SME interviews or inspection of 
data or source code. It is recommended that the units used by external models and schema be determined prior to 
attempting federation and integration of information based on those models or schema.
VIM [JCGM 200-2008] concepts of quantities and units
VIM defines

· quantity: property of a phenomenon, body, or substance, where the property has a magnitude that can be 
expressed as a number and a reference [ed. to a unit]

· kind of quantity (kind): aspect common to mutually comparable quantities
· measurement unit (unit): real scalar quantity, defined and adopted by convention, with which any other quantity 

of the same kind can be compared to express the ratio of the two quantities as a number
SMIF concepts of quantities and units
SMIF uses the VIM concepts to define "quantity values" and types to capture the quantity kind and unit. Types are 
defined for each Unit. The goals for this type based approach are:

 That it is clearly grounded in semantics as defined in VIM
 That a type may be used to specify the range of a property or relation involving unit based values.
 That a quantity value (e.g. 5 grams) be representable as a simple number with a type.
 That there is a clear type hierarchy starting with a representationally independent type in a conceptual model 

(e.g. mass) that can be further specialized to a specific unit in a logical model (e.g. grams) and further 
specialized to be represented by a physical data type (e.g. “double”).

 That external models and schema may have unit specifications asserted without changing the schema.
 That a quantity of an entity be able to be referenced without a specific quantity value being known (e.g. John’s 

weight).
 That systems of units such as [ISO-80000] or [OMG QUDV] (A part of SysML) be able to be directly 

referenced as the definition of a unit.
SMIF defines three types to realize the above goals: Quantity Kind, Unit Type, Base Unit Type. SMIF also defines 
Quantity Values, which are instances of unit types.
In VIM a quantity has a magnitude that is expressed as a number and a reference. The SMIF quantity value is the 
numeric value of such a quantity where the reference is specified by the “unit reference” property of the quantity value’s 
type. The quantity value’s type is a “Unit Type”. The Unit type has attributes for converting a unit to a base unit, a 
symbol and a unit reference. Based on VIM the unit reference may be “a measurement unit, a measurement procedure, a 
reference material, or a combination of such” and is specified with a description that contains reference information. In 
summary, the reference of a SMIF quantity value is determined indirectly through its unit type. A quantity value has 
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exactly one unit type and exactly one Quantity Kind. A quantity value expressed in any unit of the same quantity kind 
may be converted to any other unit of the same quantity kind.
This type-based sapproach allows specification of a property at the conceptual (quantity kind) logical (unit type) or 
physical (unit type with a numeric type) levels. Such specifications use the same type-based approach used for other 
aspects of the models. Given this information a SMIF implementation may correctly and reliably convert between 
compatible types regardless of representation. Please see the specification of the value types, attributes and relationships 
for more detail.
 
Example:
5. A specification for a road segment has a property “Speed limit”.
6. The type of this property in a reference conceptual model is “Speed:Quantity Kind”.
7. A unit “Kilometer per Hour:Unit Type” is defined as a subtype of “Speed:Quantity Kind” with a “unit reference” of 

“[ISO-80000.4] Kilometer per Hour”. Note that quantity kinds and unit types would normally be defined in 
reference models that correspond to a “system of units”.

8. Miles per hour is also defined as a subtype of Speed.
9. A physical schema defines “Speed-KPH: Integer”.
10. A SMIF mapping rule maps “Speed limit” to “Speed-KPH” and asserts a type of “Kilometer per Hour” on the 

“Speed-KPH” end.
11. A data file defines a road “Route One” with a speed limit of 100:KPH-Int.
12. When converted to a U.S. application this speed limit of route one can be viewed as 62:MPH-Int.
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23.1Diagram: Values

mm. Values

 

23.2Class Base Unit Type  
One unit type of a quantity kind may be marked as the base unit within a system of units. The base unit provides the 
basis for conversions between units of the same quantity kind. The base unit always has a ratio of one and an offset of 
zero.

Type of a [JCGM 200:2008] measurement unit that is adopted by convention for a base quantity 

[FIBO] (type of) Base Unit: a measurement unit that is defined by a system of units to be the reference measurement unit 
for a base quantity

There ma be at most one base unit for a quantity kind within a system of units.
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package Values Values ] [ 

Value

 hasValue : Number{redefines hasValue}
attributes

«Value»
Scalar Quantity

hasValue : Measurement Value

Unit Value
«Value»

ratio : Real Number
offset : Real Number

unit reference : Definition [0..1]
symbol : Text

Unit Type

Structured Value Type

Property Owner Type

+value text : String [0..1]
attributes

«Value»
Primitive Value «Value»

Measurement Value

«Value»
Structured Value

Identifiable Entity

FALSE : Boolean
«Value» «Value»

TRUE : Boolean

Property Owner

System of Units

Thing

Base Unit Type

Quantity kind

String
«primitive»

Integer
«primitive» «primitive»

Real

Boolean
«primitive»

Context

Value Type

Real Number
«Value»

Data Value
«Value»

Numeric
«Value»

«Value»
Number

«Value»
Boolean

Type

Integer
«Value»

«Value»
Text

{redefines categorizes}

«Sufficient»
«Restriction»

{subsets has type}

Referenced System of Units

«Sufficient»
+defined within system

{subsets in context of}

0..1

«Sufficient»
{redefines in context of}

+unit of system *

{subsets has type}

1..* {redefines categorizes}
*

«Sufficient»
«Restriction»

{subsets has type} 1

{redefines categorizes}*

{redefines has supertype}1

«Disjoint With»

«Equivalent To»«Equivalent To»

«Equivalent To» «Equivalent To»

«Equivalent To»



Direct Supertypes
Unit Type

23.3Class Quantity kind  
[JCGM 200:2008]  A Quantity Kind is an aspect common to mutually comparable quantities represented by one or more 
units. Units with a common quantity kind may be algorithmically converted to any other unit of that quantity kind. e.g. 
temperature.

Quantity kinds are a supertype of unit types which are then a type of all quantity values, Quantity values are mutually 
comparable with all other quantity values categorized by the same quantity kind.

[FIBO] QuantityKind: a categorization type for “quantity” that characterizes quantities as being mutually comparable

[DOLCE] Quality Space

Direct Supertypes
Value Type

23.4Association Referenced System of Units  
Relationship between a system of units and the set of unit types defined within that system.

Direct Supertypes
Extent of Context

Association Ends
 defined within system : System of Units [0..1]   Subsets: constrained by:Rule    

The system of units in which a unit is defined and is the basis for ratio and offset.

By default the system of units is "si": http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?
csnumber=30669

 unit of system : Unit Type [*]   Subsets: constrained by:Rule    

Unit type defined within a system of units

23.5Class Scalar Quantity  <<Value>>

Direct Supertypes
Unit Value

Attributes
 hasValue : Number

The value of a quantity that, when multiplied by the unit defined in a subtype of quantity kind, specifies a measurement 
value such as 3 Meters.

23.6Class Structured Value  <<Value>>
A value that may have sub-elements (owned properties) defined as "structure property type".
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Direct Supertypes
Property Owner, Value

Associations
 <<Sufficient>><<Restriction>> : Structured Value Type   Subsets: has type:Type    

23.7Class Structured Value Type  
A structured value type is a type of value that has parts represented as properties - also used for "data types" and forms.

Direct Supertypes
Property Owner Type, Value Type

Associations
 <<Sufficient>><<Restriction>> : Structured Value   Redefines: categorizes:Thing    

23.8Class System of Units  
[JCGM 200:2008]  A set of base units and derived units, together with their multiples and submultiples, defined in 
accordance with given rules, for a given system of quantities.

[FIBO] SystemOfUnits: a set of measurement units associated with a system of quantities, together with a set of rules 
that assign one measurement unit to be the base unit for each base quantity in the system of quantities and a set of rules 
for the derivation of other units from the base units

Direct Supertypes
Context

Associations
 <<Sufficient>> unit of system : Unit Type [*]   Redefines: in context of:Context    

through association: Referenced System of Units 

Unit type defined within a system of units

23.9Class Unit Type  
A Unit type is a type of a quantity value referencing a specific unit. A Unit Type a required type of a property 
representing a quantity. 

Each quantity value has a reference as defined by the "unit reference" property of the quantity value's  type.

[JCGM 200:2008] A Unit is a real scalar quantity, defined and adopted by convention, with which any other quantity of 
the same quantity kind can be compared to express the ratio of the two quantities as a number. e.g. Degrees Centigrade, 
Miles.

Each unit type represents refinement of a quantity kind using generalization and is thus substitutable for that quantity 
kind. Typically quantity kinds are used in conceptual models and unit types in physical or logical models.

Unit types may only subtype quantity kinds or other units.

Note that unit types are not units, but the type of quantity values expressed with respect to a common unit as defined in 
[JCGM 200:2008].
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[IDEAS] MeasureCategory: A MeasureType whose members are recognized types of MeasureInstance.

Direct Supertypes
Value Type

Attributes
 ratio : Real Number

The multiplier by which to multiple the referenced unit to convert to the base unit within a system of units.

 offset : Real Number
The difference between zero in the referenced unit and zero in the base unit after the ratio is applied within a system of 
units.

 symbol : Text
The accepted symbol for the unit referenced by the unit type

 unit reference : Definition [0..1]
The unit reference is the reference to a unit shared by all quantities values that are instances of a unit type.

[JCGM 200:2008] A reference can be a measurement unit, a measurement procedure, a reference material, or a 
combination of such. For magnitude of a quantity.

Typical references include ISO 8000 and OMG QUDV.

Associations
  : Quantity kind [1]   Redefines: has supertype:Type    

 <<Sufficient>><<Restriction>> : Unit Value [*]   Redefines: categorizes:Thing    

 <<Sufficient>> defined within system : System of Units [0..1]   Subsets: in context of:Context    
through association: Referenced System of Units 

The system of units in which a unit is defined and is the basis for ratio and offset.

By default the system of units is "si": http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?
csnumber=30669

23.10Class Unit Value  <<Value>>
A unit value is a numeric magnitude with a unit type that may be used as the value of a quantity property as defined by 
[JCGM 200:2008]. The reference of the quantity is defined by the "unit reference" property of the Unit Type.

e.g. 5cm is an instance of the unit type "Centimeter"

Each unit value has exactly one UNit Type as a type.

In a physical model a quantity value must have a type that specifies its unit (e.g. "Gram"). The magnitude shall be 
expressed using "hasValue"

[JCGM 200:2008]  A quantity is a property of a phenomenon, body, or substance, where the property has a magnitude 
that can be expressed as a number and a reference. 

Note: A quantity as defined here is a scalar. However, a vector or a tensor, the components of which are quantities, is 
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also considered to be a quantity.

[IDEAS] ScaleMapping: A CoupleType whose members are all the couples linking MeasurePoints to RealNumbers. The 
CoupleType (i.e. the set of couples) represents the scale.

[FIBO] QuantityValue: number and measurement unit together giving magnitude of a quan-tity

[Guizzardi] (quale): A point in a n-dimensional quality domain

Direct Supertypes
Value

Attributes
 hasValue : Measurement Value

The value of a quantity that, when multiplied by the unit defined in a subtype of quantity kind, specifies a measurement 
value such as 3 Meters.
[OWL] rdf:value restricted to abstract quantity

Associations
 <<Sufficient>><<Restriction>> : Unit Type [1]   Subsets: has type:Type    

23.11Class Value  
A Value is an atomic. immutable piece of information without a specific lifetime or identity independent of the value. 
Values include numbers, strings and other atomic "primitive" data. Values also include structured values, which are 
immutable.

In UML values may be defined by the name of an instance specification with a value type.

[IDEAS] Representation: A SignType where all the individual Signs are intended to signify the same Thing.

[ISO11404] The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of 
datatype generators may require the syntactic designation of specific values of a datatype.

[OWL] data values

Direct Supertypes
Thing

23.12Class Value Type  
A type categorizing values where a value is an atomic piece of information without a specific lifetime or identity 
independent of that value. Values include numbers, strings and other atomic "primitive" data.

[IDEAS] RepresentationType: A Type that is the Powertype of Representation.

[FUML] DataType

[ISO11404] datatype: set of distinct values, characterized by properties of those values, and by operations on those 
values

[OWL] rdfs:Datatype (Note that some values are represented as OWL classes)
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Direct Supertypes
Type

Associations
 <<Restriction>> : Value [*]   Redefines: categorizes:Thing    

7 SMIF UML Profile (Normative)
This section defines the UML profile for conceptual modeling and mapping. In order to improve UML’s suitability for 
modeling real-world concepts, this profile interprets standard UML with semantic extensions, as detailed below: 

7.1 Concept Modeling Profile Semantics
A concept[CC1]  model can be expressed in UML with the concept modeling profile. The profile defines the 
interpretation of UML concepts used, extends UML concepts with “stereotypes” and makes some UML semantics more 
specific to concept modeling. While there are some extensions, every effort is made to use “generic UML” class 
diagrams, as they are well understood and supported. [CC2] It only provides stereotypes to extend UML to make concept 
models more expressive. For example, without complex OCL constraints, UML normally has no way to express that, in 
the context of some class, some values must be of some type, all values must be of some type, or that the property chain 
has father • has brother is equivalent to the property has uncle. Other examples of extensions include Roles and Phases 
to describe how entities may be classified in different context or over time. These extended notions are introduced here, 
in subsequent sections. Readers are referred to the UML specification and the many books and courses on UML for an 
in-depth treatment of generic UML. 

This section is intended to define the semantics of UML used in this specification to represent concept models. [CC3] The 
subset of UML used for concept modeling is primarily that known as “Class models”, the most commonly used part of 
UML. Our scope further narrows what we utilize to exclude behaviors and methods – elements used for object oriented 
design. Those elements may be present, but they are ignored for the purposes of concept modeling.

The[CC4]  goal of a concept model is to unambiguously define durable conceptualizations of the real or an imaginary 
[CC5] world. One can think of a concept model as describing a "subject area", which can be as small or large as desired 
(e.g., the concepts across the entire financial industry, or merely the concepts within one organization). Concepts are, of 
course, the foundation of a concept model. Concepts are how we think about the world. They are modeled as 
combinations of classes, datatypes, enumerations, associations, and properties. A related goal of a concept model is to be 
as non-technical and business-friendly as possible. That means that names for concepts should contain spaces rather than 
what’s called “CamelCasedWords” or “Underscore_Separated_Words”. It is the job of the transformations to convert 
those names into lexemes that are acceptable to more technical tooling.

A concept model owned by subject matter experts is more durable than a data model or logical information model 
designed with a particular system in mind. Thus, one definition of concepts and properties can be represented by 
multiple logical information models, each optimizing for different technical goals. Note that there are multiple 
interpretations of “logical model” that span from almost conceptual to near a data schema. Conceptual models can be 
used to help federate any of these levels of abstraction.

A concept model is not an information or data model. When someone think about concepts, they think about real-world 
things, not data structures or even natural language text about those things. These real-world concepts become the pivot 
points around which we define and relate the many terms, languages and data structures that describe those things. For 
example, every Person has biological mother one Person, which is essential to being a Person. Such concepts provide 
criteria that narrow the definition of what a Person concept is, it does not specify that a system should store every 
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person’s mother. What is contextual is our knowledge of that or our need to know it, which is the subject of an 
information model.  For another example, it would be reasonable for a concept model to assert that an eye has a 
measurable visual acuity, but not to define how visual acuity will be represented within a computer as bits and bytes, or 
how often visual acuity will be stored within a database. Such technical concerns should be elaborated in a data model, 
which has elements that can be well defined by a concept model. Note, however, that things such as tables and columns 
are valid concepts in their own right – as “data things”, but they are different from the real-world concepts they might 
represent.

Concept models can be modular. A concept model may refer to things in a number of other concept models. This is 
useful for refining another organization's concept model, separately maintaining overlapping concepts between 
organizations or disciplines, or more easily managing smaller subject areas.

A concept model consists of a network of concepts with a simple essential structure. That structure is the definition of 
classes, relations between them and their characteristics. Classes represent abstractions of “things” in our world – 
including physical things like trees or people and “made up” things like agreements. 

Other concepts connect those things - the relations between things are UML associations that have properties. Things 
have characteristics such as weight or color. Things can also have properties that are attributes of a class. This basic 
network of classes, associations, and properties forms the foundation of the concept model and defines the conceptual 
framework and vocabulary of a domain. Each of these concepts may have names, which form the vocabulary of a 
domain of interest. Various assertions are then made about these concepts and their connections that further refine the 
semantics of those concepts – multiplicities of relationships, specializations between concepts, essential properties of 
things, etc.

One of the fundamental ways we understand and organize concepts is their arrangement into hierarchies, where general 
concepts are specialized to form more specific concepts within a specific context or with more specific characteristics. A 
concept model can arrange all the fundamental elements into conceptual hierarchies using generalization relationships. 
In contrast, another kind of hierarchy is a structural data hierarchy – where data elements contain other data elements. As 
the purpose of a concept model is not representing data, data hierarchies are not part of a concept model, they are 
typically part of logical information models that represent concepts. To allow for the many viewpoints that can exist for 
any concept, a concept can be in many generalization hierarchies at the same time.

The following section defines how UML with conceptual extensions is used to represent the foundational network of 
concepts using classes, associations, and properties. Additional constraints, expressed as rules,  are then attached to this 
basic framework to enhance semantic expression and the ability of automation to federate and analyze information about 
those concepts.

7.1.1 Classes

Classes specify, or classify, a set of things, according to some set of rules or understanding. Classification is the essential 
mechanism of conceptualization we use. Classes specify a set of things belonging to that class – this is called the class’s 
extent. Each element of the class is an instance of that class –it is something the class classifies. Classifications may be 
arranged in hierarchies. 

In the UML concept model, a class is diagrammed as a box with a name at the top. In some cases, a definition is also 
shown next to the box in a “note” form.
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Figure 5 Example of a Class

The above example shows the class “Incident” and its definition. It should be noted that a class is a way to classify 
something. It is natural to classify something multiple ways. For example, we may classify a situation as also being a 
danger or, to someone else, an opportunity to do harm. This is different from many technology models (e.g. Java) that 
only allow something to be classified in one way and the classification is fixed. The basic assumption of a concept 
model is that unless specified otherwise, something may be classified in any number of ways and those classifications 
may change over time.

7.1.2 Instances

While not usually used in the definition of the concept model, instances can also be shown in UML and are utilized to 
illustrate examples or to define well known instances, like the “United States of America”. Since the model is 
conceptual, instances of classes are proxies, or “signs”, for the “real thing” in the world – not data about them or other 
technology artifacts. 

Instances are also shown as a box, but have a “:” separating the name of the instance from its classes.

Figure 6 Instance Example

The above example shows a information about an instance named “Joe Smith” that is classified as a “Person” and a 
“Victim”.

7.1.3 Class Generalization

Since Aristotle, classes have been arranged in hierarchies – from most general concepts to more specific ones. In UML 
this is shown as a Generalization – an arrow with a solid line from the more specific concept to the more general. The 
more general class is known as the Superclass (or Supertype) and the more specific the Subclass (or Subtype). 
Generalization has some specific semantic rules:

·        Everything that is true about the superclass must be true about all its subclasses

·        The extent of the subclass is a subset of the extent of the superclass

·        All properties and associations that apply to instances of a class also apply to instances of all its subtypes

In a concept model, a class may have any number of superclasses or subclasses. In contrast, some technologies (Like 
XML Schema) limit the number of superclasses to one.
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Figure 7 Class Hierarchy Example

The above example shows a class hierarchy with multiple levels.

 

Note that all properties and associations defined for all superclasses of a class apply to that class. For that reason a 
complete understanding of a class and its potential properties must include such superclasses. 

A generalization is a subsumption relationship between a more general class and a more specific class. Every instance of 
the specific class is also an instance of the subsuming general class. Because of this subsumption relationship, the 
specific class inherits all of the necessary conditions of the more general classifier.

For a simple example, if we define “Futsal Team” as a subclass of “Soccer Team”, then the set of individuals in “Futsal 
Team” must be a subset of the set of individuals in “Soccer Team”.

Figure 8   Simple Generalization Example

There are four variations on generalization described in the following subsections. The first variation corresponds to the 
example above: overlapping and incomplete subclasses. That variation is the default in both UML and concept 
modeling.

7.1.3.1 Overlapping and Incomplete Subclasses

This variation is the default in both UML and in concept modeling. In this variation, an instance can be a member of the 
superclass and / or any number of subclasses. In this sense, the classification of instances is “incomplete”—sometimes 
an instance is classified by one or more specific subclasses, and sometimes it is not.

For example, the diagram below shows four instances (represented by white diamonds). One is an instance of 
“Manufacturer”, one is an instance of “Windshield Manufacturer”, one is an instance of “Car Manufacturer”, and one is 
an instance of both “Windshield Manufacturer” and “Car Manufacturer”.
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Figure 9   An example of incomplete subclasses

In both standard UML and in concept modeling, incomplete and overlapping subclasses are shown with either no 
notation, or with the equivalent notation {incomplete, overlapping} near the generalization arrow.   

Figure 10   Incomplete and overlapping subclasses in standard UML notation

7.1.3.2 Disjoint and Incomplete Subclasses

This variation means that an instance can only be classified by at most one of the disjoint classes. Disjoint classes cannot 
have any overlap in their instances. 

The diagram below shows three instances. One is an instance of “Cat”, one is an instance of “Dog”, and one is an 
instance of “Animal”. An instance classified as both “Cat” and “Dog” is impossible because there is no overlap between 
the two classes. In the most basic terms, an instance of a “Cat” cannot be an instance of a “Dog”, and vice versa.
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Figure 11   Disjoint Subclasses

The following diagram shows an example of disjoint subclasses in standard UML notation. It shows that “Dog”, “Cat”, 
and “Mouse” are all subclasses of “Animal”. In addition, the standard UML {incomplete, disjoint} notation declares all 
of the subclasses to be incomplete and disjoint. Intuitively, an instance of the subclass “Dog” is an instance of the 
superclass “Animal”, but it cannot also be an instance of the “Cat” or “Mouse” subclasses. It is incomplete because there 
can be many more kinds of animals.

Figure 12   Incomplete and disjoint subclasses in standard UML notation

The profile also supports a dependency stereotyped as «Disjoint With» to specify that anything can be disjoint, even if 
they are not subclasses of a common super type. disjoint subclasses. For example, the class Animal has three disjoint 
subclasses, Cat and Dog. [CC6] 

 

[CC7] 

Figure 13   Alternative «Disjoint With» Stereotype
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7.1.3.3 Complete and Overlapping Subclasses

This variation means that an instance can only be classified by at least one of the subclasses; it cannot be classified by 
only the superclass. Keep in mind that an instance of a subclass is indirectly an instance of a superclass at the same time.

For example, the following diagram shows three instances. One is an instance of “Windshield Manufacturer”, one is an 
instance of “Car Manufacturer”, and one is an instance of both “Car Manufacturer” and “Windshield Manufacturer”. 
Note that there can be no instance of “Manufacturer” that is not also an instance of one of the subclasses.

[CC8] 

Figure 14   An example of complete subclasses

The diagram below shows an example of complete and overlapping subclasses in standard UML notation. The diagram 
shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and “Windshield Manufacturer” are all subclasses of 
“Manufacturer”. In addition, the standard UML {complete, overlapping} notation declares that the subclasses are 
complete and overlapping.

[CC9] 

Figure 15   Complete subclasses in standard UML notation

7.1.3.4 Disjoint and Complete Subclasses

This variation means that an instance can only be classified by one of the subclasses. The instance cannot be classified 
as only the superclass, and it cannot be classified by two subclasses at the same time.

For example, in the subsequent diagram, two instances are shown. One is an instance of “Windshield Manufacturer”, 
and one is an instance of “Car Manufacturer”. There can be no instance of “Manufacturer” that is not also an instance of 
one of the subclasses, and there can be no instance that is classified as both a “Windshield Manufacturer” and a “Car 
Manufacturer” at the same time.
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[CC10] 

Figure 16   Disjoint and complete instances

The diagram below shows an example of disjoint and complete subclasses in standard UML notation. The diagram 
shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and “Windshield Manufacturer” are all subclasses of 
“Manufacturer”. In addition, the standard UML {complete, disjoint} notation declares that the subclasses are complete 
and disjoint.

Figure 17   Disjoint and complete subclasses in standard UML notation

7.1.4 Properties

Properties represent qualities inherent in something, such as size, weight or a time. Each property has a “type” for the 
kind of value that represents that quality. A property is a characteristic that an individual can have, or, as explained in a 
subsequent section, an individual must have to qualify as a particular concept.

Most properties are relations between concepts, usually expressed as a verb phrase, such as "Heart comprised of 
Chamber" or "Geographic Region identified by Address".  This kind of property is generally drawn as a UML 
association end, as part of a UML association.

Some properties are relations with data types, such as a standard UML Date, usually expressed as a prepositional phrase, 
such as "Person born on Date" or a noun phrase, such as “Person birth date Time Point”. This kind of property is 
generally drawn as a UML attribute, within an attribute compartment of the most general classifier that can have that 
quality.

Figure 18 Example of Properties
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The above example shows that an animal has the qualities of birthdate,  death date, physical sex, height and weight. Note 
that these is no assumtion that these qualities may be known, required or that different data sources may or may not 
agree on them – just that an animal has these qualties. Instances of properties are facts about the entity they describe. In 
concept models, attributes are only used for qualities, never to relate different entities.

A much smaller number of properties represent metadata, usually expressed as a noun phrase, such as "Anything 
description String" or "Anything see also URI". To represent metadata, this profile provides a stereotype called 
«Annotation Property» that can be applied to a standard UML property in a concept model. 

Note that because every class ultimately specializes the special class «Anything», when that <<Anything>> has 
properties, those properties can be used by instances of any class. Moreover, classes or subclasses can have constraints 
on the values of properties that only hold from that class and below in the generalization hierarchy. See subsequent 
sections for further explanation.

7.1.5 Associations

Associations describe facts about how entities are related. Associations are shown as lines between the classes that have 
related instances. At each end of the line is an “association end” property – the association end describes how the 
instances of the class on the far end relate to those of the near end. If there are limits to how many instances may be 
related, these are also shown. Since an association has at least two ends, the association may be read in any direction, but 
is the same “fact”. The properties involved are considered “inverse properties”. [CC11] The association end properties are 
typically verbs or verb phrases, but in some cases, such as when an association is reified as a class, the association ends 
can become noun phrases[CC12] . In either case the name denotes the intent of the class at the other end of the line. 

Figure 19 Association Example

The above example says that there are relations between actors and activities such that the actor performs the activity 
and the activity is performed by the actor. These are considered two ways to “read” the same fact. Like any fact, 
relations may be true for some period of time or in some specific situation.

As can be seen in the example the ends of associations are typically verb phrases which can then be read as <the actor> 
performs <the activity>. In other cases the ends are nouns in which case they represent a role being played. If a role 
were used above instead of “performed by” it could read: <activity> has performer <actor> (the has in this sentence 
being implied by english grammar).

This combination of classes and associations with ends forms the basis for nouns and verbs common to human language. 
The terms used for the nouns and verbs should be both consistent with their semantics and resonate with stakeholders – 
sometimes this is a bit of a challenge.

In some cases the ends of the relation are sufficent to define it, in other cases it makes more sense to give the association 
a name and its own definition. Associations and association ends, like classes, can be part of a hierarchy.

Note that unspecified multiplicities are interpreted as unconstrained: having a minimum cardinality of 0 and a maximum 
cardinality of “*”.

7.1.6 Property and association end hierarchies

Like class hierarchies, attributes and association ends (we will just call both properties from now on) can also be 
arranged in hierarchies of more or less specific properties. In UML, property hierarchies are represented using either 
“Subsets” or “Redefines”. [CC13] What a property subsets or redefines is shown next to its name in in the diagram (Note 
that by convention this is not shown on summary diagrams, only the primary definition of the property). If a property 
completely subsumes the other in a particular context it uses a “Redefines” – that is the redefining and redefined 
properties have the same set of values. If the more general concept can also be used in the context a “Subsets” is used.
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Figure 20 Example of Association End Hierarchy

The above example shows that the “has observation” and “observer” properties are specializations of the “performs” and 
“performed by” concepts. The property “observer” redefines “performed by” – that is, an Observation always has an 
observer, never a “performed by” any other kind of actor. Likewise “has observation” specializes “performs” but an 
instance of Observer can perform other activities as well. Note the generalization between the associations is implied, 
but is shown in this example for clarity.

Where a redefined or subset property has no name, it is an indication that the property type and/or multiplicity is merely 
constrained in some way. No new properties or associations are actually defined for a constraint (more on this below).

7.1.7 Association Classes

In a concept model any “fact” may have properties. Of particular importance is the “provenance” of the fact – where the 
fact came from and thus how much it can be trusted. Facts can also be time-bound, true for some period or only valid 
within some context. Where an association may have additional specific properties or may participate in other 
relationships, an “association class” is used. As implied by its name, an association class has both the properties of an 
association and the properties of a class. More complex associations between things use association classes. An 
association class is diagrammed as an association line and a class box with a dashed line between the association line 
and its class. While the association line and box may seem somewhat visually distinct – they are the “same concept”.

Figure 21 Association Class Example

The above example shows the “Stakeholder Desirability” relation. Between any situation and any stakeholder there can 
be some metrics as to how much that stakeholder desires or wants to avoid that situation. The Stakeholder Desirability 
association class represents these as properties of the association: net desirability, net harm, net benefit and net risk – 
which can all be poitive or negative reflecting a benefit or harm, respectivly.
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7.1.8 Annotation

This profile provides a way to comment on any element using annotations. One can annotate classes, properties, and 
models using an open-ended system of annotation properties. An annotation property defines information about the 
model (metadata), not about the subject domain. A property can be made an annotation property using the «Annotation 
Property» stereotype on a UML property[CC14] .

Every «Annotation» is a textual value for an «Annotation Property». An annotation describes some subject using an 
annotation property and a (usually textual) value. An annotation should specify a tagged value called “value for” that 
refers to an «Annotation Property». 

For example, the following diagram illustrates several UML comments stereotyped with «Annotation» 

Figure 22 Annotation Examples[CC15] 

7.1.9 Specific kinds of classes

There are additional concept modeling specific stereotypes documented in the reference section that further define the 
semantics of a class. Some of these stareotypes are very important for understanding the concept model and are further 
explained here. These are roles, phases and quantity kinds.

7.1.9.1 Anything

The stereotype «Anything» can be applied to any class to make it special[CC16] . Every such special class is equivalent to 
one topmost class ( ) of which all other classes are subclasses. Thus, a property of a class marked as «Anything» is ⊤
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inherited by all subclasses. In addition, while the name of a such a marked class is irrelevant, consistently naming such 
classes “Anything” in all concept models avoids any confusion with normal classes.

Figure 22 «Anything» Example

7.1.9.2 Union

A «Union» is a class that has an extent (set of instances) which is equivalent to the union of the extents of all types that 
specialize the Union (Subclasses). Specializing types shall include subtypes and types that realize the union. The union 
can be either named or unnamed. When it is unnamed, it can only be used at the domain or range of a property.[CC17] 

Note: UML realizations are included to support unions across external models because UML generalization cannot be 
used across external models due to the ownership of generalization.

An anonymous union class always implies a complete subclass generalization. [CC18] 

The following diagram states that an instance of a Person may have a value of type Cat or Dog for the cares for property. 
The diagram also states that an instance of a Cat or a Dog may have a value of type Person for the cared for by property.

Figure 23   A union class

7.1.9.3 Intersection

An «Intersection» is a class that has an extent (set of instances) equivalent to the intersection of the extents of all 
supertypes. Intersection is a stronger statement than a subtype, as a subtype may be a subset of the intersection. An 
instance of all the supertypes implies an instance is also an instance of the intersection type.

For intersection, The SMIF profile considers UML generalization and UML realization equivalent. This is due to 
ownership and legacy considerations in UML. Generalization is the preferred representation.

Note: Realizations are included to support unions across external models. UML generalization can not be used across 
external models due to the ownership of generalization.[CC19] 

7.1.9.4 Facets, Roles, Phases and <<Facet Of>>

Some types may be considered the “fundamental” type of something that is essential to its being and identity for its 
entire lifetime; this is the default assumption of most classes. Other types classify something in a specific context or for a 
period of time, SMIF calls these “Facets”.  Examples of facets are “Roles” and “Phases” that something may have over 
its lifetime. The facets an instance is classified with may change over time and may be only valid within a particular 
context or viewpoint. Facets are defined with a <<Facet Of>> generalization to another type, the type of thing that can 
be so classified. For example, “Policeman” can classify a “Person”.
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Context specific types such as Roles and Phases are classifications and expected to be used in this more contextual and 
dynamic fashion; these types may be assigned to or removed from an instance over time or in a context. 

For an instance to be classified with a classification, it must also have the type of what the classification <<Facet Of>>. 
To use the example above, a “Policeman” can’t classify a Toaster since the toaster is not a person. Please see the “Role” 
and “Phase” discussion for more usage scenarios of <<Facet Of>>.

Implementation note: most programming languages do not allow for direct representation of multiple 
classifications, multiple inheritance or context. A common implementation pattern is to represent 
classifications, roles and phases as independent objects related to the object they classify. An example of this is 
the iUnkown pattern in .NET.

The following stereotypes define additional classification semantics. 

7.1.9.5 Roles

Roles are facet classes that are expected to be dynamic and contextual, such as teacher, victim or president. A role is 
defined using a class with the <<Role>> stereotype and, optionally, a <<Facet Of>> generalization. Implementation 
technologies should interpret roles as classifications that may be added to or removed from an instance over time and 
may be defined in a particular context. A role is usually required to be a role of some particular other class, for example 
a teacher is expected to be a role of a person (at least until a computer takes her job). The constraint of what a role must 
be a role of is defined using a <<Facet Of>> stereotype of a generalization. A role will also frequently have a 
relationship with something where the multiplicity is at least one. For example, a person is a parent if they have at least 
one child.

Many implementation languages don’t have the capacity to represent roles, so roles are sometimes implemented is the 
single and unchangeable “type” of a class or DBMS table. The problem with this is that the same individual may not be 
connected across all their roles. Specifically representing roles allows the same individual to play multiple roles and for 
these roles to change – this better reflects the reality of the world and the way we think about it.

Figure 22 Role Example

The above example shows that a “social agent” can be a person or organization and that either could be classified as 
being able to play the Supplier, Stakeholder and/or a Victim roles.
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Roles help to decouple concepts in models and specifically allow an instance to “play” multiple roles at the same time or 
over time. Roles, when combined with quantification constraints, clearly define the semantics of roles. For example, we 
could say that a victim must be a victim of some incident and an owner must own something.

There are various implementation patterns for roles; SMIF does not define a specific implementation pattern, such 
choices will be based on the target technology and application requirements. Examples of such implementation patterns 
include defining a separate technology object for each instance of an entity playing a role, defining roles in separate 
graphs or using multiple classification.

Phases

Phases are facet classes that are expected to classify an instance over a specific span of time, such as a teenager, “legal 
adult” or “Paid Invoice”. A teenager is a person between the ages of 13 and 19 (inclusive) – perhaps “legal adult” is of 
age 19 or older – we may also want to consider people living or dead, thus “alive” and “dead” would be phases of a 
lifeform. Phase may be considered a synonym for the “State” of something.

A phase is defined as a class with the <<Phase>> stereotype. Like roles, phases use the <<Facet Of>> stereotype of a 
generalization to define what a phase must be a phase of.

[CC20] 

Figure 23 Phases of a person

Also like roles, phases help to decouple concepts in models and specifically allow an instance to “be in” multiple phases 
(or multiple roles) at the same time or over time. If an instance cannot be in two phases at the same time or be in a role 
and a phase a “disjoint with” constraint can be used to state that restriction. For example, “Dead” is disjoint with “Legal 
Adult” and “Living”. Only a “Legal adult” can commit to a contract.

7.1.9.6 Quantity kinds and units

[CC21] Fundamental to understanding and describing something is physical and 
other qualities such as temperature, length and color. Many data models fail to 
capture units of measure explicitly which can and has[1] resulted in dramatic 
systems failures. A concept for somethings weight should properly be typed by 
a measure of weight, not an “int” or “real” – which are just ways to represent 
numbers without knowing what they mean. Of course there needs to be numbers, but in relation to their units. 

In that there are different units that can represent the same kind of measure, such as degrees Celsius and degrees 
Fahrenheit can represent the same temperature – an abstraction is used above like units. The abstraction for a 
measurable unit is called a <<Quantity Kind>>. Examples of quantity kinds include Length, mass, temperature, 
frequency, etc. 

As any element of measurement data must be specific to a specific unit in a specific data exchange, the <<UnitType>> 
stereotype is used to define a unit for a quantity kind. A <<Represents>> stereotype of generalization (Diagrammed as a 
green arrow) is used to say that the unit represents the quantity kind.

In the example above, the “Area” quantity kind (indicated by a black shaded class) can be represented by (the green 
lines) “Square Meter”, “Square Feet” or an “Acre”.  One unit may be nominated as the “Base Unit” and will be used to 
express conversion factors between the units. As per SI specifications, the Square Meter is the base unit.
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By convention quantity kinds are used in fully conceptual models whereas units are used in data models. The “Animal” 
example shows quantity kinds being used to define properties of animals.

7.1.10 Assertions about concepts

Above we defined the network of essential concepts as classes, relationships and properties. Additional assertions may 
be made about those concepts using both UML foundational and extended profile capabilities. The following define the 
kinds of assertions that can be made. Note that the term “property” applies to both simple properties and the ends of 
associations.

7.1.10.1 Property Ownership

The concept modeling profile of UML interprets the owner (defining class) of a property definition as the subject of that 
property (its domain) and the context in which that property must conform to certain constraints. 

Constraints may be placed on a property. These constraints can include multiplicity, which includes a minimum 
cardinality and a maximum cardinality, a type for the property, existential quantification, and universal quantification. 
[CC22] When an instance is a member of a class, all of that class’ constraints must be met.

Property ownership is not interpreted as “slots” in an object. Property values may or may not be independent of the 
instance that defined them, thus supporting an OWL/RDF, or “open world”,   interpretation of properties and 
associations. 

7.1.10.2 Cardinality

 

Cardinality defines how many value of a property may exist for a particular subject instance. For example, how many 
ages can a person have? The obvious answer is that a person can have at most one age at any one point in time. Thus 
cardinalities represent the number of instances at any one time – regardless of how it is represented.

UML allows the cardinality of a property to be left unspecified, in which case it defaults to 1..1. The concept modeling 
profile interprets unspecified cardinalities as 1 (one) based on UML defaults. Note that conceptual models do define 
what you may or must know or what the requirements of a data model are – they define what must be true about the 
world as it is conceived.

7.1.11 Constraining properties and associations

A cardinality of one or more defined for a property requires that an instance of the related element must exist for an 
instance of the domain (owning class) of that property or association end to be valid. For example, a living person must 
have exactly one living brain. This is known as an existential quantification ( ) or qualified constraint in first order ∃
logic. Existential quantification is defined using UML cardinality and, potentially, subsets.

An existential quantification can be stated for a newly defined property or an existing one. For a newly defined property 
this is done by simply stating cardinality greater than one. For example, a phone must have at least one button with a 
“has buttons” association end and a cardinality of “1..*”.  When a new property is being defined it is given a name. If an 
existing property is being constrained (without a new property being defined) it subsets or redefines [CC23] the existing 
property and does not need a name. In the concept modeling profile of UML, any cardinality requiring one or more 
creates an existential quantification constraint.

A property is not limited to a minimum and a maximum cardinality (known as multiplicity) for just one type. A property 
can have a multiplicity for a superclass, while at the same time having a more specific multiplicity for one or more 
subclasses of that superclass. This type of constraint is an assertion that, among other possible values, the number of 
values of one of these subclasses is between some minimum and maximum cardinality. 
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Figure 27 Phone constraint: A phone must have a hangup button

For example, we may say a phone must have one or more buttons with a “has button” property but exactly one of those 
buttons must be the “hang up button”.  We would then define an unnamed property with the type “hang up button” that 
subsets the “has button” property with a cardinality of 1. If we wanted the Hangup Button to also define a new property, 
we would give that property a name.

Figure 28 Hangup button with new property

In the concept modeling interpretation of UML, subsetting or redefining a property without giving the new property a 
different name (or leaving off the new property name altogether) creates a constraint without defining a new property. 

As {subsets} or {redefines} with an omitted name is not well defined in UML, in the concept modeling profile it is used 
to state that a subset of values must meet the stated cardinality and type constraints of the subsetting property. It does not 
define an instantiable property of the domain, although it does indicate a context in which this constraint holds: the 
owning class and its subclasses.

The diagram below shows an existential quantification constraint on the global property “is conferred by” (from the 
Anything “Thing). The multiplicity is such that at least one of the instances of the property constraint must be one of the 
types in the union. 

Note that the property adding the constraint is unnamed. This is equivalent, in this case, to naming this property 
the same as the property being constrained (“is conferred by” from the Anything “Thing”).

[CC24] 

Figure 29 Constraining a global property

7.1.12 Tightening a property’s type

Sometimes it is necessary, in the context of some class, to constrain all the values of a property to a particular type. 
When defining a new property, the type of that property asserts that all values of that property must be of the given type. 
This is known as a universal quantification or for-all constraint ( ) in first order logic. This kind of constraint is an ∀
assertion that only values of the specified type are valid, and the number of values must be between some minimum and 
maximum multiplicity. 
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Where all values of a property must be of a given type in a specialized property, UML {redefines} is used as part of the 
definition of the property. [CC25] If the redefined property is given a name, a new property with the quantification is 
defined. If the redefined property does not have a name, the existing property is constrained in the more specialized 
context (usually a subclass).

Figure 30 Example of redefines

The example above shows a “simple phone” that has exactly two buttons and they must be an answer button and a 
hangup button. Since redefines is used, no other buttons are allowed.

The diagram below shows the introduction of a new property “consists of”, defining a universal quantification constraint 
on the property. The constraint states that, in the context of Soccer Team and any of its subclasses, all values of this 
property must be of the type “Soccer Player” and that there must be between 5 and 11 values of this property.

Figure 31 Example of Cardinality range

The diagram below shows a universal quantification constraint on the property “observer”. Where any occurrence can be 
performed by any actor, an observation must be performed by an entity in the role of observer. 

[CC26] 

Figure 32 Observation Example

7.1.13 Inferring a type from its properties

A property's multiplicity or type is declared in the context of an owning class or a special «Anything» class. These 
declarations are always necessary conditions for an instance to be a member of the owning class[CC27] , or, in the case of 
«Anything», for an instance to be valid at all.
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Another kind of condition is known as necessary and sufficient. A class with at least one necessary and sufficient 
condition is known as a defined class[CC28] , which means the differentiating characteristics of the class that make it 
distinguishable from its parent and sibling classes are defined. Note that using a necessary and sufficient condition on a 
property with a minimum cardinality of zero is not meaningful.[CC29] 

Figure 33 Phone example for sufficient

The diagram above defines a phone as any “electronic giz” that has a hangup button. The existence of a hangup button 
is sufficient to know something is a phone.[CC30] 

In the concept modeling interpretation of UML, a property that has the «Sufficient» stereotype applied to it indicates that 
when an instance satisfies the multiplicity and type constraints for all the sufficient property’s’ values, not only is a 
necessary condition for being an instance of the class met, it is a sufficient condition..  This necessary and sufficient 
condition could allow an inferencing engine to classify that instance as a member of the class that owns the property. All 
<<sufficient>> constrains of the class and all superclasses must be met for an instance’s type to be inferred.[CC31] 

In the concept modeling interpretation of UML, a property that has the «Sufficient» stereotype applied to it indicates that 
when an instance satisfies the multiplicity and type constraints for all the sufficient property’s’ values, not only is a 
necessary condition for being an instance of the class met, a sufficient condition is also met.  This necessary and 
sufficient condition allows an inferencing engine [CC32] to classify that instance as a member of the class with that 
condition. Once an instance is classified automatically, the conditions on any other properties that have the «Sufficient» 
stereotype, including those inherited from superclasses, merely become necessary conditions the instance must meet to 
be a valid member of the owning class. An instance satisfying the constraints of all the «Sufficient» properties is enough 
for an inferencing engine to automatically classify an instance.

The diagram below shows that when an instance with the property “has contract with” satisfies specific multiplicity 
(“1..*”) and type constraints (of type ‘Steering Wheel Manufacturer” and “Windshield Manufacturer”) for the property’s 
values, the instance meets necessary and sufficient conditions to be a member of the class “Car Manufacturer”. 
Therefore, an inferencing engine [CC33] would classify this as an instance of the class “Car Manufacturer”. As discussed 
above, an instance meeting all of these necessary and sufficient conditions is enough to classify the instance. The 
conditions on the values of these properties become necessary conditions on an instance for it to be a valid member of 
class “Car Manufacturer.”[CC34]  Also, an instance meeting all of the necessary and sufficient conditions is enough to 
distinguish instances of the class “Car Manufacturer’ from its parent class “Manufacturer.”

[CC35] 

Figure 35   An example of necessary and sufficient condition
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7.1.14 Property Chain

A property chain is useful for composing a property from two or more other properties that are put together in a 
chain[CC36] . It defines the property with reference to the other properties. The property chain allows you to navigate 
from a starting class (the one with the stereotype «Equivalent Property») [CC37] through a chain of properties that take a 
path through the same or multiple other classes. 

A property chain is an ordered list of linked properties, therefore, it should have two or more “chain” tagged 
values[CC38] . 

The following example describes a Person class that has two subclasses “Female Person” and “Male Person”, and four 
properties “has parent”, “has father”, “has uncle”, and “has brother”. The stereotype of the property “has uncle” will be 
«Equivalent Property», and the tagged value is chain = has father, has brother. (Note that the «Equivalent Property» 
stereotype is suppressed in this diagram, but the tagged values are not.)[CC40] 

Figure 34   Property Chain Example

7.1.15 Equivalent Property

An «Equivalent Property» [CC41] allows you to represent equivalent properties [CC42] in a model. You can make a 
property equivalent to two or more other properties by applying the stereotype «Equivalent Property» to the 
referenced properties and the tagged value “equivalent to” the equivalent properties.

 The following figure shows the equivalent properties in a diagram[CC44] . 
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Figure 35   Equivalent properties Example

In the example, the property “has mother” is equivalent to the property “has mom”. 

7.1.16 Equivalent Class

An «Equivalent Class» stereotype applied to a generalization can specify equivalence between two classes. Class 
equivalence expresses a generalization relationship stereotyped as «Equivalent Class». Tools may draw this with a 
double-headed arrow.[CC45] 

The following figure shows two equivalent classes in a diagram.

Figure 36   Two Equivalent Classes in the Concept Modeler

In the example, the equivalence class arrow defines that the two classes are semantically equivalent to each other.

7.2 SMIF Profile::SMIF Concept Modeling Profile Reference
The conceptual modeling profile defines the conceptual modeling capabilities of SMIF in UML.
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7.2.1 Diagram SMIF Conceptual Modeling Profile

Figure 1 SMIF Conceptual Modeling Profile

7.2.2 Stereotype Annotation

An <<Annotation>> comment provides a textual "body" as a "value for" one <<Annotation Property>> describing the 
annotatedElement(s).

Base Classes

·        Comment

Tag Definitions

 value for : Annotation Property [1]

<value for> is the property for which the <<Annotation>> is providing a value.

7.2.3 1.2.3     Stereotype Annotation Property

An <<Annotation Property>> is a kind of <<Resource>> that asserts a property represents metadata rather than 
assertions about the subject domain.

Base Classes
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·        Property

Direct Supertypes

·        Resource

7.2.4 1.2.4     Stereotype Anything

<<Anything>> is a class that represents anything and is equivalent to all other classes of anything in any other model or 
logic.  The defined class is equivalent to SMIF:Anything, OWL:Thing and other "top level" classes.

Because of this equivalence, every class in every model virtually inherits from Anything, just as all OWL classes 
virtually inherit from owl:Thing.

<<Anything>> classes may be used to define "global properties".[CC46] 

Base Classes

·        Classifier

7.2.5 Stereotype Base Unit Value

<<Base Unit Value>> is a kind of <<Unit Value>> that marks one Unit Value of a quantity kind as the base Unit Value 
within a model. The base Unit Value provides the basis for conversions between units of the same quantity kind. The 
base unit always has a ratio of one and an offset of zero.

Base Classes

·        Classifier

Direct Supertypes

·        Unit Value

7.2.6 Stereotype Category

A category is a facet that is a classification or division of people, events or things regarded as having particular shared 
characteristics. Categorization is typically contextual, potentially transient and may or may not be formally defined.

As with all facets, categories are non-rigid. Something classified by a category must also be classified by an entity type. 
An entity may be classified by any number of categories and those categories may change over time.

Base Classes

• Class

Direct Supertypes

• Facet

7.2.7 Stereotype Characteristic

A kind of characteristic a type of thing may have, e.g. paint may have a color. Characteristics  are the type of 
characteristic bindings which are "first class" elements and may participate in relationships and have other 
characteristics.

[IDEAS] Property: An IndividualType whose members all exhibit a common trait or feature. Often the Individuals are 
states having a property (the state of being 18 degrees centigrade), where this property can be a CategoricalProperty 
(qv.) or a DispositionalProperty (qv.).
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[ISO 1087] type of characteristics: category of characteristics (3.2.4) which serves as the criterion of subdivision when 
establishing concept systems. NOTE The type of characteristics colour embraces characteristics (3.2.4) being red, blue, 
green, etc. The type of characteristics material embraces characteristics made of wood, metal, etc.

[UML] Property

Base Classes

·        Property

7.2.8 Stereotype Concept Model

A <<Concept Model>> is a kind of <<Model>> that represents concepts in a real or possible world. Instances of 
elements in a concept model are "real world" things, not data about those things.

Base Classes

·        Package

Direct Supertypes

·        Model

7.2.9 Stereotype Disjoint With

A <<Disjoint With>> dependency is an assertion that two model elements do not and may not denote any of the same set 
of entities.

When applied to a classifier, every element of the classifier's extent (set of instances) is included in the set of disjoint 
things.

 Base Classes

·        Dependency

7.2.10 Stereotype Enumerates

An <<Enumerates>> dependency asserts that the supplier of the dependency is a type and the client of the dependency is 
a package containing a complete set of possible instance specifications. In this way, <<Enumerates>> is more general 
than a UML Enumeration because it can enumerate more than just UML data types.

Base Classes

·        Dependency

7.2.11 Stereotype Equivalent Class

A <<Equivalent Class>> generalization is an assertion that two classes have the same extents (set of instances). Unlike 
ontological languages it is not assumed that the two elements are consistent, as statements from different context may or 
may not agree.

Base Classes

·        Generalization

7.2.12 Stereotype Equivalent Property

<<Equivalent Property>> is a declaration that a property is equivalent to one or more other properties (using "equivalent 
to") or is equivalent to a chain of other properties (using "chain"). <<Equivalent Property>> with at least one value for 
the "equivalent to" property is an alternative way of expressing <<Equivalent To>>, without introducing additional lines 
on a diagram.
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Either "equivalent to" or "chain" must have a value.

Base Classes

·        Property

Tag Definitions

 chain : Property [*]

An ordered list of properties forming a "property composition" expressing a traversal path that is 
equivalent to the stereotyped property. This is similar to a "property chain". 

Due to potential "missing information" in creating a chain, a chain may or may not be able to be 
determined from asserting the chained property. Such a determination is defined in the mapping rules 
for that property in a particular context.

Note that a chain may also be defined with mapping rules.

 equivalent to : Property [*]

A set of properties that the <<Equivalent Property>> is equivalent to. Note that equivalence can also be 
declared with a <<Equivalent To>> dependency.

1.2.12  Stereotype Equivalent To

An <<Equivalent To>> dependency is an assertion that two model elements represent the same thing or the same set of 
things. Unlike ontological languages it is not assumed that the two elements are consistent, as statements from different 
contexts may or may not agree.

Base Classes

·        Dependency

7.2.13 1.2.13  Stereotype External Reference

<<External Reference>> provides traceability to the source of a "fact" in a model based on some external information 
resource. This references helps to facilitate provenance. Reference is a statement about the model data and has no 
semantic implication. Source reference may impact the trust in a statement but the evaluation of trust is outside of this 
specification. 

External reference is combined with the owned comment(s) to create SMIF descriptions as defined in the SMIF meta 
model..

Base Classes

·        Element

Tag Definitions

 external reference : String

Specifies the location URL of the external resource. The format must comply with [RFC3987].

 external term : String

The external term or location of the information in the source. The form of expression of the term or 
term path is dependent on the referenced technology.

 Stereotype Facet Of

A <<Facet Of>> generalization is a "mix in" or "non rigid" classification of an entity beyond any 
fundamental (rigid) entity type. 
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An instance must be typed by the classifies supertype for it to also be classified as the classifies subtype. A classification 
may be contextual, such as within a relation, situation and/or time frame. Instances may have any number of types and 
facets may change over time.

<<Facet Of>> is used in defining what a <<Role>> may be a role of, and for phases, what a <<Phase>> is a phase of. 
For a <<Category>>, <<Facet Of>> defines the kind of thing classified.

<<Facet Of>> Implies that specialized type is a <<Facet>>

Facets may be added to or removed from an individual over time and in different context. 

Base Classes

·        Generalization

7.2.14 Stereotype Has Value

A <<Has Value>> dependency asserts that the client of the dependency is a type and the supplier of the dependency is an 
instance specification that defines acceptable values for one or more properties of that type. Each slot of the instance 
specification is a possible value for a corresponding property in the type. 

<<Has Value>> corresponds to one or more OWL property restrictions containing a "hasValue" constraint.

Base Classes

·        Dependency

7.2.15 Stereotype Information Model[CC52] 

An <<Information Model>> is a kind of <<Model>> that represents 

a model for some purpose, independent of technical implementation. An information model may contain logical models 
or data models, as well as other logical viewpoints.

Base Classes

·        Package

Direct Supertypes

·        Model

7.2.16 Stereotype Intersection

 An <<Intersection>> is a class that has an extent (set of instances) equivalent to the intersection of the extents of all 
supertypes. Intersection is a stronger statement than a subtype, as a subtype may be a subset of the intersection. An 
instance of all the supertypes implies an instance is also an instance of the intersection type.

For intersection, The SMIF profile considers UML generalization and UML realization equivalent. This is due to 
ownership and legacy considerations in UML. Generalization is the preferred representation.

Note: Realizations are included to support unions across external models. UML generalization cannot be used across 
external models due to the ownership of generalization.

 Base Classes

·        Classifier
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7.2.17 Stereotype Involves

<<Involves>> defines a property of a class as the "end" of a relationship -  the way in which instances of a a relationship 
participate in (or, are involved in) instances of another type (including other relationships). Sometimes called a variable, 
argument or role.

In a conceptual model the terms associated with an <<Involves>> property are typically "verb phrases" defining how 
instances of the involved type participate in the relationship.

Base Classes

• Proeprty

7.2.18 Stereotype Is In Context

<<Is In context>> is an assertion that the client of the dependency is in the context of the supplier of the dependency. All 
assertions and rules defined in the supplier context apply to the client and everything in the context of the client (i.e., it is 
transitive). Packages, classes, situations and instances are typical contexts. Note that <<Is In Context>> is the default 
interpretation of a dependency, if no stereotype is specified it will be interpreted as <<Is In Context>>.

Base Classes

·        Dependency

7.2.19 Stereotype Model[CC53] 

<<Model>> is stereotype of package that may have an id (see <<Resource>>) and/or a namespace prefix (like the "dc" 
in "dc:title").

Base Classes

·        Package

Tag Definitions

 namespace prefix : String

A hint as to an appropriate abbreviation for a model that may be used in some technology mappings, 
such as XML. The prefix should be short and contain only letters and numbers and must start with a letter. e.g.,  
"dc" in "dc:title".

Direct Supertypes

·        Resource

7.2.20 Stereotype Phase

A <<Phase>> (a.k.a. "State") is a classification of an entity based on change of that entity over time. A <<Phase>> 
<<Facet Of>> the types that may have that phase (e.g., "Teenager").

A phase is a [DOLCE] "non rigid sortal", a type that may change over the lifetime of an entity.

Base Classes

·        Class

7.2.21 Stereotype Quantity Kind

<<Quantity Kind>> is an aspect common to mutually comparable quantities represented by one or more units. Units 
with a common quantity kind may be algorithmically converted to any other unit of that quantity kind. e.g. temperature.
[ JCGM 200:2008]. 
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Units with a common quantity kind may be algorithmically converted to any other unit of that quantity kind. e.g. 
temperature. SMIF takes a wider view of quantity kinds to include conversions that may be contextual and time 
dependent, such as currencies.

Base Classes

·        Classifier

Direct Supertypes

·        Value

7.2.22 Stereotype Relationship

A relationship defines a condition involving related things. A relationship may be asserted within a context as true or 
false within that context. Each instance of a relationship has a number of  bindings to the "ends" of the relationship 
which do not change for the life of the relationship.. 

A relationship may be true or false within its context (including a time frame) but is atomic in its truth value.

Relationships may participate in (be bound to) other relationships and as such bindings involving a relationship may 
change over time. That is, relationships are "first class" objects. 

The relationship stereotype may be used with association classes or classes. All associations are implicitly relationships. 
Classes stereotyped as relationships should stereotype the relationship ends as <<Involves>>.

Base Classes

·        Class (including association class)

7.2.23 Stereotype Resource

A <<Resource>> is anything that can be referenced by an identifier in a model, ontology or vocabulary. The resource 
identifier is often an IRI.[CC54] 

Base Classes

·        NamedElement

Tag Definitions

 id : String

A unique identifier for any resource. 

When defined for a Package, id has the format defined in [RFC3987]. In this case, it is equivalent to 
UML:URI, and setting one will set the other.

Stereotype Restriction

A restriction is a property or association that constrains an existing property or association rather than defining a new 
concept in a domain.

Properties with no name or the same name as a property they subset or redefine are implicitly restrictions. Associations 
with a restriction as an end are implicitly restrictions.

Base Classes

• Association

• Property

Stereotype Role
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A <<Role>> is a classification of an entity based on that entity's behavior, participation in a situation, or capabilities. A 
<<Role>> <<Facet Of>> the types that may play that role. e.g., "Teacher" <<Facet Of>> “Person”.

A role is a [DOLCE] "non rigid sortal", [CC55] a type that may change over the lifetime of an entity. 

Base Classes

·        Class

7.2.24 Stereotype Sufficient

Specifying <<Sufficient>> for one or more of a classes or association’s properties means that an instance having an 
acceptable cardinality of values for all of those properties implies that the instance is an instance of that type.[CC56] 

Base Classes

·        Property

7.2.25 Stereotype Synonym

<<Synonym>> defines an alternate name for the annotated elements of the comment. The alternate name is the body of 
the comment.

The alternate name will not be the "preferred name" of the element.

Base Classes

·        Comment

7.2.26 Stereotype Union

A <<Union>> is a class that has an extent (set of instances) which is equivalent to the union of the extents of all types 
that specialize the Union (Subclasses). Specializing types shall include subtypes and types that realize the union.

Note: UML realizations are included to support unions across external models because UML generalization can not be 
used across external models due to the ownership of generalization.

[MathWorld] Given two sets A and B, the union is the set that contains elements or objects that belong to either A or to 
B or to both.

Base Classes

·        Classifier

7.2.27 Stereotype Unit Value

A <<Unit Value>> is a <<Value>> with an <<External Reference>> that represents a type of a quantity value 
referencing a specific unit. A Unit Value is a required type of a property representing a quantity. 

[JCGM 200:2008] A Unit is a real scalar quantity, defined and adopted by convention, with which any other quantity of 
the same quantity kind can be compared to express the ratio of the two quantities as a number. e.g. Degrees Centigrade, 
Miles.

Each Unit Value represents refinement of a quantity kind using generalization and is thus substitutable for that quantity 
kind. Typically, quantity kinds are used in conceptual models and Unit Values in physical or logical models.

Unit Values may only subtype quantity kinds and numbers.

Note that Unit Values are not units, but the type of quantity values expressed with reference to a common unit as defined 
in [JCGM 200:2008].
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Each instance of a Unit Value shares a common unit (as defined by standards) with a reference defined by "external 
reference" and "external term".

Classifiers defined as <<Unit Value>> shall semantically subclass the SMIF model “Unit Value” class.

Base Classes

·        Classifier

Tag Definitions

 offset : Real

The difference between zero in the unit and zero in the base unit after the ratio is applied to the base 
unit as defined within the same model.

 ratio : Real

The multiplier by which to multiply the unit to convert to the base unit as defined within the same 
model.

 symbol : String

The accepted symbol for a unit. e.g. "g" for "Gram".

Direct Supertypes

·        External Reference

·        Value

7.2.28 Stereotype Value

A <<Value>> is a type representing an atomic unit of information without independent identity. Values include numbers, 
strings and enumerations. In some cases values may have internal structure. Values do not change over time.

Quantity kinds and units are also values. Values may stereotype any classifier. UML data types, including primitives and 
enumerations, are implicitly values.

Classifiers defined as <<Value>> shall semantically subclass the SMIF model “Value” class.

Base Classes

·        Classifier
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7.3 UML Profile – SMIF Patterns & Model Mapping Profile
This section is still undergoing edits.

Pattern based rules provide a general framework for stating the consistency of and between SMIF models and elements. 
The primary use of patterns is for mappings between data models and conceptual models using a <<Mapping Rule>> 
however a <<Pattern Rule>> may be used to assert consistency within a model, for example to represent generic 
assertions such as “all birds have feathers”. Pattern based rules are declarative in nature.

Mapping rules define how a particular data model or schema <<Represents>> information about the concepts defined in 
conceptual reference models. This facilitates an “n-way” mapping of information represented using different data 
models. Since conceptual models are not data models they do not have any particular representation for “data instances” 
of that model. Instances of a conceptual model would be the real things in the real world os a possible world based on 
real world concepts[CC57] . The real-world concepts are the “pivot points” between the data representations. Of course 
implementations may automate data models that correspond closely to conceptual reference model, but that is outside of 
this specification.

Due to the various ways to represent information, mappings can become complex. The UML representation of mappings 
simplifies these mappings as much as possible. Note that details of the mapping relations are defined in the profile 
specification.

7.3.1 Structure of Rule Specifications

Figure 24. Structure of Rule Specifications

There is an expected structure for defining rules. This normally starts with a <<Rule Model>> package that contains 
pattern and mapping rules. Note that any “namespace” can contain rules, including classes. By default, rules will hold 
within the namespace they are defined in but another namespace may be specified by setting the <holds within> tag of a 
rule. Packages stereotyped as <<Rule Model>> are considered to hold universally within any model in which they are in 
context. Within a rule context, such as a <<Rule Model>> there may be generic rules marked as <<Pattern Rule>>, 
<<Represents>> rules or <<Mapping Rule>>s.

<<Pattern Rule>>s and <<Mapping Rule>>s contain <<Pattern Variable>>s that define the pattern of the rule. Pattern 
Variables can be UML “Parts” (which are properties), connectors and connector ends. There are various stereotypes and 
tags for Pattern Variables to further define their effect on the pattern.  A <<Mapping Rule>> may also contain 
<<Match>>  rules which specify how different Pattern Variables may represent the same informaiton. Mapping rules are 
bi-directional and may reflect changes between “either side” of the mapping.

The difference between a <<Pattern Rule>> and a <<Mapping Rule>> is that a <<Pattern Rule>> simply states 
something that must hold (be true) within a model. For example, that fish can swim. A <<Mapping Rule>> creates a 
correspondence between different representations of the same facts using <<Match>> rules.[CC58] 
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7.3.2 Rule Model

<<Rule model>> is a stereotype of Package to indicate that the contents should be asserted as rules.

Figure 25 Example Rule Model

The package SMIFProfileToModelMapping is a rule model and the enclosed rules will hold within any model in which 
it is included.

7.3.3 Representations

The foundation of mapping is the <<Represents>> dependency between classes. Represents asserts that a particular type 
found in a concrete (logical or physical) model represents information about a real or abstract concept in a conceptual 
reference model. By default <<Represents>> does not implement a mapping, it defines what elements can be mapped 
and thus restricts mappings. For simple “one-one” mappings there is an optional tag for <<Represents>> to <<map-
all>> known instances of one Class to another.

Example

Figure 26 Activity Mapping Summary Example

The above example shows that an “ActivityType” from NIEM-Core represents an “Event” as defined in the threat/risk 
conceptual model. By convention we show the represents dependency as a green dashed. Representations provide the 
most abstract level of mapping. This diagram also shows that that there is a more detailed activity Match Rule for the 
same types which will map the properties and relationships between these types.

What this means is that some ActivityType instances represent some information about events in “real world” activities. 
Note that ActivityType may also represent other things, but that not shown in this example. Based on the SMIF mapping 
riles, this <<Represents>> also implies that relationships involving an event can be validly mapped to relationships 
involving an activity and that properties of an occurrence can validly be mapped to properties of an activity, 
<<Represents>> relations provide type-safety for mappings. 

What this does not say is that ActivityType and Event are equivalent and can necessarily be mapped 1..1. How they are 
mapped is detailed in mapping rules. However, if the <map-all> tag of <<Represents>> is set true then ActivityType and 
Occurrence will be asserted as being mapped 1..1, bidirectionally (mapping of types and properties is considered 
independent, each property must also be mapped). Note that <map-all> implies nothing about the properties and 
relationships, only the mapped types (each type, property and relationship is an independent concept that is mapped 
independently).
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Figure 27 {map all} Example

In the figure above, all UML classes stereotyped as <<Role>> will be mapped to the Role class in the SMIF model.

7.3.4 Mapping Rules

The detail of mappings happens in classifiers stereotyped as <<Mapping Rule>>s. Mapping Rules define patterns of 
concrete types and patterns of reference concepts that have corresponding <<Match>> rules. The <<Match>> 
correspondence rules do the real work, mapping element by element.

Mapping rules are, externally, not that interesting. They are just a classes or components stereotyped as <<Mapping 
Rule>>. However, note that Mapping Rules may specialize other rules – in which case they include the more general 
rule but may restrict the <<Match>> variables. 

Figure 28 Representation Rule External Example

The above defines a mapping rule for activities that is an assertion that the enclosed pattern must hold and provides a 
context (in this case the enclosing package) where the Match Rules are asserted.  If we look inside the Activity Match 
Rule we see the structure.

 

Figure 29 Representation Rule Internal Structure
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Figure 7.1: Representation Rule Internal Structure

 The above example is the internal “structure” of the Activity Match Rule. In this case the mapping is very 1..1 and 
simple. Inside of the rule we see “parts” that represent “ActivityType” named “NIEM Activity” and “Event” named 
“OTR Event”. The green line between them is a “Match” rule, represented as a UML connector stereotyped as 
<<Match>>. This states that in this pattern NIEM Activities and TR Events map 1..1. We could also have put filter 
constraints on that mapping, but in this case did not.

We also see  “<<Focus>> on “OTR Event” and “NIEM Activity”. Focus defines the “starting points” for the for each 
side of the mapping pattern where one focus is the “Concrete” information model and one is the “Reference” conceptual 
model. A  SMIF conformant mapping engine will find all instances of “Event” (in any mapped data format) and map 
those to NIEM Activity. It will also find all NIEM Activities and map them to Events. All other parts of this mapping 
become relative to the <<Focus>> elements.

Related to both NIEM Activity and  OTR Event we see other variables. The black lines show how instances of each 
variable will follow associations and relationships to populate other variables. Each black line is an instance of a SMIF 
relationship and as such also a pattern variable. Relationships between variables can be folloowed in the same way that 
relationships between actual entities could be followed.

The green lines create mapping <<Match>> assertions between those variables within the context of this rule. The 
<<Match>> assertions may connect directly to a variable or to a property within that variable, denoted as a “property 
path”. (Note that in UML it is not possible to show the connection directly to the contained variable – this limitation has 
been addressed in SysML)

Thus within this rule NIEM “ActivityName: maps to “has name” based on the <<Match>> between “property 
path=ActivityName” and its connection to “Event Name”. Event name has a “Naming” relationship with “OTR Event”.

The important point to remember is that mapping any fact requires that the types are compatible. That type compatibility 
is defined by <<Represents>> rules between the types. The requirement for type matching may be overridden by setting 
the <coerce> tag of the <<Match>> rule, but in most cases type safety of <<Match>> rules is desirable.

To allow for type compatibility, a <<Match>> correspondence is conditional, the types of the mapped elements must 
either match or have a <<Represents>> rule that allows them to be mapped.  If, for example, an event had an identifier 
that was an image and NIEM did not allow for image identifiers, that “fact” would not be mapped. Of course, other rules 
could be constructed to allow for some mapping convention in this case, but SMIF will not force a <<Match>> where 
the types are not compatible (there is a way to override this with “coerce”, which will be explained below).
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Mapping for primitive data types, such as strings and numbers, may be provided by the mapping engine implementation 
based on each mapped technology. This allows, for example, an identifier that is represented as an integer to be mapped 
to a string.

In that there may be multiple <<Match>> rules between the same thing, one can be marked as the <<Default>>. A 
default rule will be applied only if no other rules have fired.  In the example above the “ActivityIdentification”/”ID” 
<<Match>> is a default. This is because a name is also a kind of identifier so ID will not include names.

7.3.5 <<Select>> Variables

The foundation of SMIF rules is patterns.  When a rule is asserted a SMIF implementation attempts to “select” the 
pattern based on existing information and then “assert” that the pattern is “true”.  The <<Focus> and <<Select>> 
elements are those that must pre-exist for the pattern to even be considered. Relating this to a SQL Query, the 
<<Focus>> would be similar to the “FROM” clause and the <<Select>> elements would be in the “Where” clause.

If there is more than one related <<Select>> element, they must all be “true” for the pattern to hold (be asserted). If 
there are any constraints for the <<Focus>> elements they must also hold. Constraints include condition expressions, the 
type(s) of the Pattern Variables and multiplicities.

Once a pattern is selected, all properties, relationships and subsets from the <<Focus>> and <<Select>> elements are 
“filled in” from existing information by following the associations, relationships and properties defined in the pattern.

What happens if, as these other elements are being filled in, some other constraint is violated? This depends on the kind 
of rule. For a general pattern rule the constraint will be asserted – made to be true by attempting to create (assert) each 
required element. In the case of a mapping rule the rule is in an error state, the behavior of an implementation in 
response to an error state is implementation specific. 

In a mapping rule, after the <<Focus>> and <<Select>> elements have been validated and any relationships followed, 
the <<Match>> rules for the pattern are applied, asserting the information in the corresponding concrete or reference 
model.

Note that for a mapping rule there will be two “sides” that are matched – the “Reference” side and the “Concrete” side. 
Each “side” is considered a separately selected ssub-patter. Sides are determined by the “mapping pattern” property of 
the focus variables.
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Figure 7.2: <<Select> Example

The example above shows vary specific match pattern on the “Reference” SMIF model side,  there must be a pattern of 
an “Equivalent” constraint that constrains exactly one “Property” and also constraints exactly one “Traversal”. These 
patterns are very specific because there are very specific ways to represent general concepts (like equivalence) in the 
UMLprofile.

Once a pattern on one side is matched, the UML side is “asserted”, creating the required elements. In the opposite 
direction, only an Equivalent Property with a “chain” will be asserted on SMIF.

7.3.6 Multiplicity constraints in patterns

Pattern variables may be bound to zero, one or more elements,  each one describes a set. It is sometimes necessary to 
constraint pattern variables to be bound to a specific number of values. This may occur either in matching the pattern or 
as the result of following various paths (associations, relationships and characteristics). The same multiplicity constraint 
that is used to constrain other properties, such as on the ends of relationships, may be used to constraint pattern 
variables. Multiplicity constraints may also be used on the “ends” of connectors between pattern properties, to constraint 
the number of relationships (actual ground facts) that must exist between the pattern properties.

Setting the multiplicity constraint of a pattern property constrains it to have the specified set of values. If a <<Select>> 
is constrained, the pattern must match the constraint. If not a match, the pattern multiplicity will be satisfied by the SMIF 
implementation creating the required elements. If, for any reason, this or other constraints cannot be satisfied the pattern 
is a violation The method for handling constraint violations is not specified.
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Figure 37. Example of setting multiplicity constraints on <<Match>>

In figure 218 the above example a SMIF Equivalent has exactly 2 <constrains> entities. This is the condition for 
matching the pattern. This matching pattern then maps the Equivalent constraint to a UML dependency stereotyped as 
<<Equivalent with>>.

Once these base patterns are mapped the two mapped entities will be mapped to the <supplier> and <target> of the UML 
dependency via a “List First” rule. The List First rule separates a list into its first and remaining elements.

7.3.7 Subsets of Pattern Variables

Conceptual models use sub classing, multiple inheritance, roles and phases to more accurately and intuitively represent 
the domain of interest. Many data technologies do not support these concepts and even if they did, would probably 
structure implementation classes differently. In other cases, there may be restrictions on the “extant” of what maps to 
what that require calculations or other constraints. To provide for these cases we use <<Subsets>> in mapping patterns. 
A subset defines another part (property) that holds a subset of the instances of the superset part, based on the type, 
relationship values and other constraints of the subset part.

To understand this feature we will first look at models for “Entity” and “Actor” in NIEM and the threat conceptual 
model, respectively.
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Figure 33 NIEM Entity Example

In NIEM, an “EntityType” has a “substitution group” property with properties that can be “EntityOrganization” or 
“EntityPerson” to allow the entity to represent one or the other. The general rules for mapping NIEM state that 
substitution groups are considered subtypes of the primary type.

Figure 34 Conceptual Actor Example

In the Threat conceptual model “Actor” is a Supertype of Organization and, indirectly person. It is also a Supertype of 
“Automaton”. An Automaton can’t be an actor in NIEM so it will not be mapped (However we could define a NIEM 
extension to allow this).

We want to map actors to NIEM entities, but see that they are very different “shapes”.
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Figure 35 Subset part example

In the above example we see the actor - EntityType mapping. Notice “a person” of type “Person”. “a person” is defined 
to be a <<Subset of>> actor – that is every actor that is of type “Person” will populate the “a person” part. If an actor is 
not a Person, “a person” will be null. “a person” is then mapped to “EntityPerson”, a property of “Entity” by way of the 
substitution group (sorry that this gets into some NIEM substitution group details, but you probably get the basic idea). 

Likewise, “an organization” will map to EntityOrganization iff “an actor” is an Organization. Note that if “an actor” is 
neither of these, it will not map to any NIEM property.

Note also that there could be other constraints on the subset parts, such as required relations or constraint expressions.

7.3.8 <<Pattern Variable>> computations and constraints 

Figure 36 Map constraints example

To continue the tour of the primary mapping capabilities we will look at a subset of the “Organization” mapping.

Note the “type=” on two maps to “identified by”. In the conceptual model there are subtypes of identifiers. In NIEM 
there are special properties for some of these identifiers. The “type=” constraint on a map says that the map will be 
constrained to the type (on the specified end) of the actual instance matched the specified type. So 
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“OrganizationLocalIdentification” will only map to “identified by” if the type if the identifier includes “Local 
Identifier”. Likewise, “OrganizationTaxIdentification” will only map to “identified by” if the type includes “Tax 
Identifier” (remembering that a SMIF concept instance can have multiple types). Likewise, the reverse is true; those 
properties will “assert” the type of the identifiers they reference.

On the maps to “contact via” we see “condition=”. Condition is a tag of <<Pattern Variable>> that references a UML 
expression. The conditions referenced are properties of the association between an organization and “Contact Means”. 
The maps will be constrained to the “availability” property is set as indicated. Likewise, if an organization is being 
created, that property will be set by the same condition.

Note that “inc” is a subset of an organization only if it plays the role of an “Incorporated Organization”. In NIEM there 
is a Boolean set if the organization is incorporated. The “ExistsRule” is a computation rule (that is its implementation is 
outside the specification). But in this case ExistsRule’s behavior is defined – the exists Boolean will be true when the 
mapped “element” has some value. This results in the NIEM “OrgainizationIncorporatedIndicator” corresponding to the 
organization being incorporated.

If the organization is incorporated it will have an incorporation relationship to its incorporating body (incorporated by).  
That incorporation relationship will contain its date of incorporation, which is mapped to the NIEM property. In UML 
association classes have to be put into a structure like this in two pieces, the “line” and the “box”. Since both the line 
and the box represent the same “fact”, they are asserted to be equivalent – this is only required when association class 
properties need to be accessed and is required because UML has no way to show connectors as association classes.

The end result is that the more “flat” representation of an Organization in NIEM is mapped to the concept model.

7.3.9 <<Pattern Variable>> explicit

Most elements are mapped regardless of their source – explicitly asserted in a model or derived based on rules. There 
are times where only explicitly asserted elements need be mapped. In this case the element is marked with the <explicit> 
tag as TRUE.

Figure 41 Example of "explicit" Pattern Variables

The above example shows that the “in context of” relationship in SMIF should only be mapped to UML if it is explicitly 
asserted.
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7.3.10 Pattern Precedence

It is possible for more than one pattern to match for the same set of values. The general rule is that all patterns that 
match will execute. Where this may produce redundant elements a pattern may either subtype or subsume another. 
Where a pattern subtypes another and the more specific pattern matches, the more specific pattern will include the rules 
of the more general pattern. 

Figure 46. Example of Pattern Generalization

An incident is a kind of activity. The incident rules subtypes and subsumes that activity map. An activity that is an 
incident will use the incident Match Rules as well as the sub-rules defined within activity.

Where  a pattern uses a <<Subsumes>> dependency, if the <supplier> pattern matches it will prevent the <target> 
pattern from executing for the same set of values.

Figure 47. Example of Rule Subsumption

Using “Equivalent With” is more general but >Equivalent Property” more compact. If equivalence can be expressed  
with “Equivalent Property” it subsumes “Equivalent With”.

7.3.11 Generic Rules

Most of our examples have used mapping rules. Rules are also generic patterns that can be asserted to hold within some 
context. Generic rules generally use quantifiers rather than <<Match>> but can be stated either way. A quantifier defines 
a pattern property that contains a set of instances defined by the property type. The quantifier specifies how many 
instances will be in the set from none to all.
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Figure 48. Generic Rule Example

Figure 47 provides an example of a generic <<Pattern Rule>>. The rule states that as part of the definition of the class 
Man, the “Man rule” applies which says that all men <is of sex> male.  The Pattern Variable “all men” has “quantifier = 
All” which is really what makes it represent all men, not the name.  “all men” then has a relationship to a constant “sex = 
male” (the default value of a property is considered its value). The result is the “assertion” that all men will have the 
same sex.

Note that more than one property may be quantified, for example we could say “All men like at least one supermodel” 
by quantifying “a supermodel” with “quantifier = There exists” and creating a connector “likes” between them. Options 
for quantifiers are: None, There Exists, Exactly One, Some, Most, All. Note that for an interpretation in first order logic, 
There Exists, Some and Most are the same, even if they may have an intuitive distinction. In other logics concepts like 
“Most” may offer a default.

7.3.12 Facades and Representation Computations

In some cases, it is desirable to have mapping rules as “reusable pieces” that can provide a “Face” to a model that fits 
better for one or more mapping rules. There is also the case where these rules fall outside of the expressive power of 
mapping rules and are best done in calculations (program code or fUML models). 

Facades provide for making a new “face” of either a conceptual model or data model element. A Façade is a class with 
additional properties and/or relations that can be derived from the element it represents. Either mapping rules or 
computations are then used to “populate” the façade or map the façade back to what it represents. The façade 
implementation keeps the façade properties consistent as any connector implies change in a property value.
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Figure 42 Facade Example

The “PersonalInjuryFacade” above represents the concept of “Harm” but only where the harm impacts a Person. In 
NIEM, injury is only considered relative to a person – so this façade provides such a “View” of the conceptual model, 
harm restricted to personal injury. In this case no additional representation rule is required, but such a façade could also 
define new properties or associations that would be populated in the same way as a data model.

Note that in this case the <<Represents>> relation is applied to a generalization to assert that “PersonInjuryFacade” 
includes all of the features of “Harm” and is also a representation of it.

Facades can also use “Computations” or Representation Rules to define their properties.

Figure 43 Computation Facade Examples
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In the above example both a telephone number façade and address façade are “computed” based on combining both a 
structured and unstructured representation of telephone numbers and addresses. The specific computation is external to 
the specification and defined by implementations. These implementations could be implemented in any language, 
including “ALF”, the executable language of UML.

The mapping engine is responsible for implementation of computation behavior and should update a computed Façade 
whenever any of its elements changes (some implementations may group such changes in a transaction).

In summary, facades and computations provide for reusability and extensibility of mappings.
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7.4 SMIF Profile::SMIF Patterns Profile Reference
The SMIF rules profile defines the way to model rules and mapping within and between data sources via a conceptual 
model.

7.4.1 Diagram SMIF Patterns Profile

Figure 1 SMIF Pattern Profile

Computation computes a value for the mapping end based on the expression applied to the mapped property or 
relationship. 

Where computation is used inverse mapping is not specified - any inverse mapping is implementation specific.

7.4.2 Stereotype Excludes

In a pattern or mapping rule, <Excludes> defines a pattern variable that represents a set of elements to be subtracted 
from the set of elements on the opposite side of the exclude connector (note that this is set subtraction, not numeric 
subtraction).  Where more than one variable is is exclulded, the union of those variables will be used as the basis for the 
substraction.

<<Excludes>> stereotypes the end of a connector that is to be excluded from the opposite end.

Base Classes

• Connector
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7.4.3 Stereotype Facade

<<Facade>> defines a classifier as being a view of (facade of) one or more other classifiers. Facades usually define 
additional properties that match some external view of a conceptual model element. 

A facade will represent the classifier for which it is a facade. A Facade will use one of two methods to relate the facade 
properties to the conceptual Model:

* <<Pattern Rule>> using the facade.

* Applying the <<computation>> stereotype and Subclassing "Representation Computation"

Base Classes

·        Classifier

7.4.4 Stereotype Match

<<Match>> defines an equality rule between two properties in a <<Mapping Rule>> - they must represent the same 
information, perhaps using different representations.

<<Match>> may be used between sub-patterns, as is common for a <<Mapping Rule>> or within one model to equate 
different representations for the same thing (e.g., property paths).

Base Classes

·        Connector

Tag Definitions

 coerce : Boolean

Where <coerce> has a value of TRUE  a Match Rule will be evaluated even if the <from> is not type 
compatible with the <to> type.

Where <coerce> is FALSE or unstated a Match Rule will be evaluated only if the <from> is type 
compatible with the <to> type.

Type compatible shall be defined as one of: Being the same type, <from> being a subtype of <to> (as 
defined by a type generalization rule), <from> being a representation of <to> (as defined by a 
representation rule).

Representation rules applied to a supertype apply to a subtype.

7.4.5 Stereotype Mapping Rule

<<Mapping Rule>> defines a pattern structure described by a structured classifier that shows how both "sides" of a 
representation (conceptual and reference) are related. Each "side" must match, including any traversals through 
structures defined with properties and connectors. Such traversals are links which may also have conditions on the ends 
to more precisely define the pattern. 

The pattern is described using structured classifier properties and connectors.

The mapping engine ensures that the patterns match, bidirectionally.

Base Classes

·        StructuredClassifier

Direct Supertypes

·        Pattern Rule
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7.4.6 Stereotype Select

<<Select>> specifies an element in a structure that must match a data source for the pattern to qualify to hold. 
<<Select>> is similar to an SQL where clause.

<<Select> is a shortcut for <<Pattern Variable>> qualification=Select

Base Classes

·        Connector

·        Property

Direct Supertypes

·        Pattern   Variable

7.4.7 Stereotype Pattern Variable

<<Pattern Variable>> further defines a connector or property within a pattern as a pattern variable.

Note that the UML default value may be used to set the initial value of a Pattern Variable for primitive values.

Base Classes

·        Connector

·        Property

Tag Definitions

 computation : ValueSpecification

<computation> computes a value for the Pattern Variable based on the expression.

Where computation is used inverse mapping is not specified - any inverse mapping is implementation 
specific.

 condition : ValueSpecification

<condition> states a condition that must be true within the scope of the Pattern. This can be used for 
pattern matching, setting values or restriction of paths.

 explicit : Boolean [0..1]

If <explicit> is true, the Pattern Variable must be explicitly asserted as the indicted type, not derived or 
inferred from a supertype or super property.

 qualification : Variable Qualification

<quantification> defines the behavior of an element with respect to a pattern - how it impacts the 
selection, evaluation or assertion of the pattern. Specifics are defined in each variable qualification 
enumeration literal.

 value : InstanceSpecification

Instance specification of a fixed value for a pattern variable.

7.4.8 Enumeration Variable Qualification 

Variable qualification values define the behavior of an element with respect to a pattern - how it impacts the selection, 
evaluation or assertion of the pattern.
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7.4.8.1 Literals

 Select

Select is used in query and mapping patterns, all elements of the classified type that match the pattern are selected as 
instances of the pattern.
Select may be considered a qualified "All". Select does not assert the existence of something, it determines the existence 
of a pattern match such that other assertions may be made.
Where a pattern is asserted, "Select" variables shall be asserted.
Relationships between properties with <quantifier>=Select must hold between the selected properties for the pattern to 
be asserted.

 Optional

Optional is used in query and mapping patterns, the property shall be populated as a consequence of the pattern 
matching.
Where a pattern is asserted, "Optional" variables shall not be asserted.
Optional is the default if no qualification is stated.

 Default

The element will be asserted only if no other values are asserted within the pattern or as pre-existing assertions.

 Assert

The property does not impact the selection of the pattern, it is an asserted consequence of the pattern.

 Negate

The property does not impact the selection of the pattern, it is negated consequence of the pattern - it may not exist.

 Exactly One

The existential quantifier limited to exactly one of a potentially larger set of the properties type.

 There Exists

The existential quantifier - at least one of the properties type.  

 All

The universal quantifier - the quantified property is a stand-in for all elements of  the existent of the quantified type

7.4.9 Stereotype Represents

<<Represents>> is an assertion that the source concrete type or feature provides a more concrete way to represent the 
target reference type. Represents may be used within conceptual models or from a physical model to a conceptual 
model.

•              A representation that is a dependency or realization makes no assumption that the types are substitutable.

•              A representation that is a generalization is substitutable for what it represents.

 

Base Classes

·        Dependency

·        Generalization

Tag Definitions
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 condition : ValueSpecification

<condition> is an expression that must be true for the source to represent the target.

 map-all : Boolean

<map-all> implies a direct mapping between instances of the types in both directions.

<map all> is equivalent to a mapping with a rule mapping properties of each type but is lower 
precedence than other mappings - if types have a more specific map it will apply first.

7.4.10 Stereotype Pattern Rule

<<Pattern Rule>> defines a pattern that must hold true for the context of the rule.

A pattern rule is a pattern structure described by a structured classifier that shows how elements are related. Each 
mapped element must match, including any traversals through structures defined with properties and connectors. Such 
traversals are links which may also have filters to more precisely define the pattern. An implementation of SMIF may 
ensures that the patterns are asserted for the scope the rule holds for.

Base Classes

·        StructuredClassifier

Direct Supertypes

·        Pattern

Tag Definitions

 holds within : Namespace

<holds within> is the context in which a rule is asserted (required to be true). Anything contextualized 
by the context is subject to the rule.

If not stated the rule is asserted by its owning scope.

7.4.11 Stereotype Rule Model

A <<Rule Model>> defines a package as containing rule specifications and asserts those rules to be true.

Base Classes

·        Package

Direct Supertypes

·        Model

7.4.12 Stereotype Subsets

In a pattern or mapping rule, <Subsets> defines a pattern variable that represents a subset of another variable. The subset 
may be constrained by a more specific type, expressions, values or required cardinalities. Where more than one variable 
is is subset, the union of those variables will be used as the basis for the subset.

Subset stereotypes the end of a connector that is the superset.

Base Classes

·        ConnectorEnd
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7.4.13 Stereotype Subsumes

<<Subsumes>> is a dependency between rules. When a rule subsumes another the subsumed rule will not apply (fire). if 
the <subsumed by> rules applies (fires).

Where rules are also patterns, a rule may specialize another which will subsume the specialized rule as well as include 
the generalized rule parts as parts of the specialized rule.

Base Classes

·        Dependency

7.5 SMIF Profile::SMIF Computation Rules
Computation rules define mappings that are implemented via external methods. As such the implementation is defined 
by implementations, not the specification.

 

7.5.1 Diagram SMIF Computation Rules

Figure 1 SMIF Computation Rules

7.5.2 Class ExistsRule

<<Exists Rule> is a rule to map the existence of an <element> to a boolean.

<exists> is true iff <element> is not null.

Direct Supertypes

·        Rule Computation

Attributes

 element

 exists : Boolean
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7.5.3 Class List First

The <List First> rules will take the <list> property and place the first element into<first>. If <list> is empty, <first> will 
be empty.

If there are more <list> elements than 1, all remaining elements are placed as a set in <remainder>.

If <list> is an un-ordered set the order will be indeterminate but repeatable.

<<List First>> is bidirectional and will compute <list> by appending <first> and <remainder>.

Note that this will act like a LISP CDR/CAR pair

Direct Supertypes

·        Rule Computation

Attributes

 first [0..1]

 

 list [*]

 

 remainder [*]

 

7.5.4 Class MapID

<<MapID>> is a rule where the source is an ID and the target is a class, maps an instance of the ID to an instance of the 
class.

Direct Supertypes

·        Rule Computation

Attributes

 id : Classifier

 

 identified : Classifier

 

7.5.5 Class Rule Computation

<<Rule Computation>> is an abstract supertype for a facade that includes external implementation. The implementation 
is outside of this specification.

7.5.6 Class Summarize

<<Summarize>> is a rule that  produces a natural language description of an element. Summarize may not be bi-
directional and is expected to have information loss.

<summary> is a summary of <element>. 

Content of summary is implementation specific.
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Direct Supertypes

·        Rule Computation

Attributes

 element

 

 summary : String
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7.6 Profile mapping to SMIF Model (Normative)
The following diagrams summarize the mapping which is further defined in the UML mapping model.

Note – this section is out of date and due to be revised.

7.6.1 SMIFProfileToModelMapping::High level representation

The following diagrams show the <<Represents>> rules defined between the profile and the SMIF model.

7.6.1.1 Diagram: Anything

Figure 1.         Anything

7.6.1.2 Diagram: Classes

Figure 2.         Classes
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7.6.1.3 Diagram: Lexical Structure

Figure 3.         Lexical Structure
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7.6.1.4 Diagram: Patterns

Figure 4.         Patterns
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7.6.1.5 Diagram: Relationships

Figure 5.         Relationships

7.6.1.6  Diagram: Rules

Figure 6.         Rules
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7.6.1.7 Diagram: Types

Figure 7.         Types
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7.6.1.8 Diagram: Values

Figure 8.         Values
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7.6.2 SMIFProfileToModelMapping::Mapping rules

The following are the mapping rules that hold for mapping the SMIF profile to the SMIF model.

 

 

7.6.3 Class Annotation value mapping 

Annotation value mapping defines a direct correspondence between a UML <<Annotation>> stereotype of a comment 
and a SMIF Relationship typed by a Annotation Relationship Type. It then creates the properties for the Annotation 
Relationship Type and binds the subject of the annotation to the annotated element and the annotation property to the 
string "body" value of the annotation.

Note that an annotation defines a property instance, it does not define a new property.

Figure 1.         Annotation value mapping

package SMIFProfileToModelMapping::Mapping rules
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7.6.4 Class Association mapping 

Figure 2.         Association mapping

The Association mapping draws a direct correspondence between a UML association and a SMIF Relationship Type. It 
maps each property of the association to a SMIF property.

SMIF does not distinguish between associations and association classes (all associations are essentially classes). As a 
convention, a UML association class will be created only when the association is used as an type of some other property.

For annotations, UML <<Annotation Property>> corresponds with a SMIF Annotation Property as a property of a 
Annotation Relationship Type.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.5 Class Class mapping 

Figure 3.         Class mapping

UML Classes correspond directly to explicitly asserted SMIF types.

package SMIFProfileToModelMapping::Mapping rules
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7.6.6 Class Class property mapping 

Figure 4.         Class property mapping

Properties of UML classes correspond with a pattern involving a relationship. SMIF conceptual models to not define 
properties directly on types but each is an independent relationship type. 

Each UML Property corresponds with a SMIF property with a type that matches the UML property type. The SMIF 
property becomes a property of a Relationship Type with a "domain" property corresponding to the UML class owning 
the property. 

UML properties marked as an <Annotation Property>> Correspond to a SMIF Annotation Property and further classify 
the relationship as a Annotation Relationship Type.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.7 Class Containment mapping 

Figure 5.         Containment mapping

Containment mapping forces the UML ownership structure and the SMIF lexical structure to match.
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7.6.8 Class Enumeration mapping 

Figure 6.         Enumeration mapping

Enumeration mapping draws a correspondence between UML Enumerations and a SMIF Value with an "Enumerated" 
constraint.

While SMIF may enumerate non-Values UML does not support this semantic.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.9 Class Equivalent property chain mapping 

Figure 7.         Equivalent property chain mapping

Equivalent property chain mapping maps the UML stereotype <<Equivalent Property>> with a "chain" tag to a SMIF 
"Equivalent" constraint constraining a SMIF Traversal of that chain.

The stereotyped property corresponds with the <constrains> property of the Equivalent constraint.

package SMIFProfileToModelMapping::Mapping rules
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7.6.10 Class Equivalent property mapping 

Figure 8.         Equivalent property mapping

Equivalent property chain mapping maps the UML stereotype <<Equivalent Property>> with a <equivalent to> tag to a 
SMIF "Equivalent" constraint constraining a SMIF Secondary property.

The stereotyped property corresponds with the <constrains> property of the Equivalent constraint.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.11 Class Equivalent with mapping 

Figure 9.         Equivalent with mapping

Equivalent with draws a correspondence between a UML dependency stereotyped as <<Equivalent With>> and a SMIF 
equivalent constraint with exactly 2 constrained elements. The first element is mapped to the dependency supplier and 
the second element to the dependency target.

The "List First" rule is used to divide the list elements.
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Note that SMIF Equivalent constraints with more than 2 constrained elements will map to a generalization set.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.12 Class Generalization mapping 

The generalization mapping rule draws a direct correspondence between a UML Generalization and a SMIF Type 
Generalization Constraint.

 

The UML <<Facet Of>> constraint corresponds with the "as facet" boolean of the SMIF constraint.

Figure 10.       Generalization mapping

package SMIFProfileToModelMapping::Mapping rules
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7.6.13 Class Generalization set covering mapping 

Figure 11.       Generalization set covering mapping

Generalization set covering constraint draws a correspondence between a generalization set where isCovering is true and 
a SMIF Covering Constraint.

The generalization set has a set of UML covered <<Generalization>>s, all of which must have the same <general> 
Classifier, which is mapped to the <holds within> type.

The <specific> classifiers correspond to a set of <is covered by> types.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.14 Class Generalization set disjoint mapping 

Figure 12.       Generalization set disjoint mapping
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Generalization set disjoint constraint draws a correspondence between a generalization set where isDisjoint is true and a 
SMIF Disjoint Constraint.

The generalization set has a set of UML covered <<Generalization>>s, all of which must have the same <general> 
Classifier, which is mapped to the <holds within> type.

The <specific> classifiers correspond to a set of <is covered by> types.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.15 Class Is in context mapping 

Figure 13.       Is in context mapping

Is in contest mapping draws a correspondence between a UML dependency with a <<Is In CContext>> stereotype and 
an explicit "In Context" Relationship. The relationship is Explicit if it has been explicitly asserted, not inferred.

package SMIFProfileToModelMapping::Mapping rules
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7.6.16 Class Mapping rule mapping 

Figure 14.       Mapping rule mapping

The Mapping rule mapping draws a correspondence between any UML StructuredClassifier marked as a <<Mapping 
Rule>> and a SMIF Mapping. The <holds within> tag then maps to the context the mapping holds within.

Any structured classifier may be created from SMIF.

package SMIFProfileToModelMapping::Mapping rules

 

7.6.17 Class Named element Mapping 

Figure 15.       Named element Mapping

package SMIFProfileToModelMapping::Mapping rules
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7.6.18 Class Pattern property mapping 

Figure 16.       Pattern property mapping

Pattern property mapping makes a correspondence between any UML property that is <part> of a <Rule> and a SMIF 
Pattern Property.

The owning StructuredClassifier corresponds with the pattern that owns the Pattern Property.

If the UML Property is stereotyped as a <<Pattern Variable>> the tags correspond with the explicit, quantifier, 
condition, computation and has strength properties of the SMIF pattern property.

The <type> of the UML Pattern Variable is constrained to be a required <is of type> of the pattern property.

package SMIFProfileToModelMapping::Mapping rules
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7.6.19 Class Property hierarchy mapping 

Figure 17.       Property hierarchy mapping

Property hierarchy mapping, for properties that have been mapped in other ways, maps UML subsetted properties to a 
Property Generalization Constraint with redefines=false.

It also maps UML redefines properties to a Property Generalization Constraint with redefines=true.

package SMIFProfileToModelMapping::Mapping rules

7.6.20 Class Synonym mapping 

Figure 18.       Synonym mapping

Semantic Modeling for Information Federation (SMIF) 0.9 251



Synonym mapping maps a UML Comment with a <<Synonym>> stereotype to a SMIF Term that identifies the element 
that is annotated by the comment in UML.

A Synonym term is not a preferred term.

package SMIFProfileToModelMapping::Mapping rules
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[1] https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

 [CC1]Need to nail down our terminology and use consistently.

 [CC2]Pete asserts the semantics are different – I don’t think so. Need to resolve.

 [CC3]Redundant and not well worded

 [CC4]This section is somewhat redundant with the specification introduction but you may want to include it for those 
only reading this section. However, it should be consistent.

 [CC5]We have been using “real or a possible world”

 [CC6]Perhaps a better example would be ones that did not share a direct common supertype – perhaps animal and 
mineral.

 [CC7]By the way, when you paste in the diagrams – do it in SVG to make Andrew happy.

 [CC8]Doesn’t seem right. Both are manufacturers.

 [CC9]Not a great example in that the set is not complete.

Perhaps Silverware: Knife, fork, spoon? (perhaps not exactly true but more true). Remember the “Spork”?

 [CC10]Also not an example that fits the assertion. Perhaps the animal kingdom?? Or, Computer storage: Rotating or 
solid state?

 [CC11]I would remove – not true for n-ary and would need to define term.

 [CC12]Don’t know that this is true, the representation should not change the semantics 

 [CC13]Need definitions

 [CC14]May want to mention and make an example of the built-in annotation <<anything>> described by Definition. 
Note that the mapping supports <<Annotation>> of these and also maps the UML documentation element to a 
Definition which can be augmented by <<External Reference>>.

 [CC15]From pete: 
“is a comment an annotation property”? Make it clear it is an annotation value.

 [CC16]J Seems odd.

 [CC17]Not sure this constraint is needed.

 [CC18]Why would we jump to that conclusion? Seems like a mxing of semantics and would be non-obvious.

 [CC19]Redundant.

 [CC20]Could use your generalization set here.

 [CC21]Changed picture

 [CC22] don’t assume math people.

 [CC23]Somewhere these need to be defines, perhaps this is the place.

 [CC24]Out of date – also, mixing <<Anything>> with this example may be more challenging.
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 [CC25]Not true (was a change)

 [CC26]May be to complex an example since you have others.

 [CC27]Only if 1+

 [CC28]Pete: Bad term

 [CC29]Hmmm. Could it be sufficient and not necessary?

 [CC30]Should show “1”

 [CC31]Need to think about how much we -require-inference. I’m not sure we should here. It could be just a model 
validity check, other implementations could do inference. I think we should keep this very open. For one thing, this 
could make it fall into the “ontology” category. This is true in other places as well.

 [CC32]Said again.

 [CC33]Again

 [CC34]Pete: still not clear whether the sufficient condition is to have a contract with a Steering 
Wheel AND a Windshield manufacturer
 [CC35]Out of date

 [CC36]Can we not use the term in its definition?? Perhaps “be defining a path through other properties that have the 
same starting point.

 [CC37]Pete: not in example; in any case surely it will be applied to a property not a class
 [CC38]More accurately – it has one tag value with 2 or more elements.

 [CC39]Don’t know where this restriction came from, seems counter-productive and may prevent some of the OntoUML 
restrictions. REMOVE!

 [CC40]Should show for example. Also show property chain ST

 [CC41]Pete: how does this relate to previous section using the same stereotype?
 [CC42]Perhaps you could be less circular?

 [CC43]Again, don’t know where this restriction comes from or why.

 [CC44]Pete: not a good example - these are synonyms
 [CC45]Remove or make optional to stay within normal UML

 [CC46]More – what is a global property?

 [CC47]facet (including roles and phases)

 [CC48]<<Facet Of>>

 [CC49]facet

 [CC50]facet

 [CC51]facets

 [CC52]tbd

 [CC53]tbd

 [CC54]below it says [RFC3987] We should be consistent.
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 [CC55]Tbd – really need to nail down.

 [CC56]A bit hard to read

 [CC57]Pete: not so simple - semiotic triangle involved

consider putting in semiotic triangle picture and explanation.
 [CC58]Consider name change for one or the other
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8 SMIF Mapping to OWL 2 (normative)
Examples are given below that show the transformation of UML modeled in SMIF to an exported OWL 2 ontology. The 
OWL ontologies are presented in OWL Functional Syntax. 

The first diagram below, for a simple UML class, shows the ontology is transformed as the package containing the UML 
class. Subsequent diagrams do not show the package in the diagram for the sake of brevity.

8.1 Class

Ontology(<http://nomagic.com/ontology/example-case/case-01>
Declaration(

Class(:Person)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)

)

8.2 Class Generalization

Ontology(<http://nomagic.com/ontology/example-case/case-04>
Declaration(

Class(:FutsalTeam)
)
Declaration(

Class(:SoccerTeam)
)
AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf(:FutsalTeam :SoccerTeam)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)

)

8.3 Class with Datatype Property
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Ontology(<http://nomagic.com/ontology/example-case/case-02>
Import(<http://www.omg.org/spec/PrimitiveTypes/20100901>)
Declaration(

Class(:Person)
)
Declaration(

DataProperty(:hasName)
)
Declaration(

AnnotationProperty(<http://purl.org/dc/terms/description>)
)
Declaration(

Datatype(xsd:string)
)

AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(

:Person 
ObjectIntersectionOf(

DataMaxCardinality(1 :hasName xsd:string) 
DataMinCardinality(1 :hasName xsd:string)

)
)
AnnotationAssertion(rdfs:label :hasName "has name"@en)
DataPropertyDomain(:hasName :Person)
DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description 
<http://www.omg.org/spec/PrimitiveTypes/20100901#String> "An instance of String 
defines a piece of text. The semantics of the string itself depends on its 
purpose, it can be a comment, computational language expression, OCL expression, 
etc. It is used for String attributes and String expressions in the 
metamodel."@en)

)

8.4 Class with Self-Referential Object Property

Ontology(<http://nomagic.com/ontology/example-case/case-02a>
Declaration(

Class(:Person)
)
Declaration(

ObjectProperty(:isRelatedTo)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(

:Person 
ObjectIntersectionOf(

ObjectMinCardinality(1 :isRelatedTo :Person)
)

)
AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)
ObjectPropertyDomain(:isRelatedTo :Person)
ObjectPropertyRange(:isRelatedTo :Person)

)
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8.5 Class with Object Property

    
Ontology(<http://nomagic.com/ontology/example-case/case-03>

Declaration(
Class(:SoccerPlayer)

)
Declaration(

Class(:SoccerTeam)
)
Declaration(

ObjectProperty(:consistsOf)
)
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
SubClassOf(

:SoccerTeam 
ObjectIntersectionOf(

ObjectMaxCardinality(11 :consistsOf :SoccerPlayer) 
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)

)
)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

)

8.6 <<Anything>> with Datatype Property

+has member : Thing
+provides : Thing
+is conferred on : Thing
+has responsibility : Duty
+is conferred by : Thing
+is mandated by : Thing{subsets is conferred by}

«Anything»
Thing

Ontology(<http://nomagic.com/ontology/example-case/case-03a>
Import(<http://www.omg.org/spec/PrimitiveTypes/20100901>)
Declaration(

DataProperty(:hasName)
)
Declaration(

AnnotationProperty(<http://purl.org/dc/terms/description>)
)
Declaration(

Datatype(xsd:string)
)
SubClassOf(

owl:Thing 
ObjectIntersectionOf(

DataMaxCardinality(3 :hasName xsd:string) 
DataMinCardinality(2 :hasName xsd:string)

)
)
AnnotationAssertion(rdfs:label :hasName "has name"@en)
DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description
<http://www.omg.org/spec/PrimitiveTypes/20100901#String> "An instance of String 
defines a piece of text. The semantics of the string itself depends on its 
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purpose, it can be a comment, computational language expression, OCL expression, 
etc. It is used for String attributes and String expressions in the 
metamodel."@en)

)

8.7 <<Anything>>with Self-Referential Object Property

«Anything»
A Thing

-is related to

1..*

Ontology(<http://nomagic.com/ontology/example-case/case-03b>
Declaration(

ObjectProperty(:isRelatedTo)
)
SubClassOf(

owl:Thing 
ObjectIntersectionOf(

ObjectMinCardinality(1 :isRelatedTo)
)

)
AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)

)

8.8 <<Anything>> with Object Property

Thing Liquid
-is dissolved by

1..*

Ontology(<http://nomagic.com/ontology/example-case/case-03c>
Declaration(

Class(:Liquid)
)
Declaration(

ObjectProperty(:isDissolvedBy)
)
AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(

owl:Thing 
ObjectIntersectionOf(

ObjectMinCardinality(1 :isDissolvedBy :Liquid)
)

)
AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

)

8.9 Class with Object Property without Range

Ontology(<http://nomagic.com/ontology/example-case/case-03d>
Declaration(
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Class(:Receptacle)
)
Declaration(

ObjectProperty(:holds)
)
AnnotationAssertion(rdfs:label :Receptacle "Receptacle"@en)
AnnotationAssertion(rdfs:label :holds "holds"@en)
ObjectPropertyDomain(:holds :Receptacle)

)

8.10Class with Subproperty

Ontology(<http://nomagic.com/ontology/example-case/case-05>
Declaration(

Class(:FutsalPlayer)
)
Declaration(

Class(:FutsalTeam)
)
Declaration(

Class(:SoccerPlayer)
)
Declaration(

Class(:SoccerTeam)
)
Declaration(

ObjectProperty(:composedOf)
)
Declaration(

ObjectProperty(:consistsOf)
)
AnnotationAssertion(rdfs:label :FutsalPlayer "Futsal Player"@en)
SubClassOf(:FutsalPlayer :SoccerPlayer)
AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf(:FutsalTeam :SoccerTeam)
SubClassOf(

:FutsalTeam 
ObjectIntersectionOf(

ObjectMaxCardinality(5 :composedOf :FutsalPlayer) 
ObjectMinCardinality(5 :composedOf :FutsalPlayer)

)
)
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
SubClassOf(

:SoccerTeam 
ObjectIntersectionOf(

ObjectMaxCardinality(11 :consistsOf :SoccerPlayer) 
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)

)
)
AnnotationAssertion(rdfs:label :composedOf "composed of"@en)
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SubObjectPropertyOf(:composedOf :consistsOf)
ObjectPropertyDomain(:composedOf :FutsalTeam)
ObjectPropertyRange(:composedOf :FutsalPlayer)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

)

8.11 Class with Universal Quantification Constraint on Property I

Ontology(<http://nomagic.com/ontology/example-case/case-06>
Declaration(

Class(:Dog)
)
Declaration(

Class(:DogOwner)
)
Declaration(

Class(:Person)
)
Declaration(

Class(:Pet)
)
Declaration(

ObjectProperty(:has)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog :Pet)
AnnotationAssertion(rdfs:label :DogOwner "Dog Owner"@en)
SubClassOf(:DogOwner :Person)
SubClassOf(

:DogOwner 
ObjectIntersectionOf(

ObjectMinCardinality(1 :has :Dog)
ObjectAllValuesFrom(:has :Dog)

)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)
AnnotationAssertion(rdfs:label :Pet "Pet"@en)
AnnotationAssertion(rdfs:label :has "has"@en)
ObjectPropertyDomain(:has :Person)
ObjectPropertyRange(:has :Pet)

)

8.12Class with Universal Quantification Constraint on Property II
This example differs from the previous example primarily in that the superclasses “Person” and “Pet” are from a 
different package than their subclasses “Dog Lover” and “Dog,” respectively. This is reflected in the OWL ontology by 
the import of this namespace.
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The superclasses “Person” and “Pet”, defined in the package “Case 06”, are a different color and a lighter shade than the 
classes defined in the package “Case 07”. This is to distinguish them from the classes defined in this package. 
MagicDraw’s AutoStyler plugin can automatically set the properties for classes and other UML elements “defined 
elsewhere,” that is in a package not containing the defining diagram for the UML element (See section 2.2, Automatic 
Styling of Concept Models.).

Ontology(<http://nomagic.com/ontology/example-case/case-07>
Import(<http://nomagic.com/ontology/example-case/case-06>)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Person>)
)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)
Declaration(

Class(:Dog)
)
Declaration(

Class(:DogLover)
)
Declaration(

ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(

:DogLover ObjectIntersectionOf(
ObjectAllValuesFrom(<http://nomagic.com/ontology/example-case/case-
06#has> :Dog)

)
)

)

8.13Class with Existential Quantification Constraint on Property

Ontology(<http://nomagic.com/ontology/example-case/case-08>
Import(<http://nomagic.com/ontology/example-case/case-06>)
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Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Person>)

)
Declaration(

Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)
Declaration(

Class(:Dog)
)
Declaration(

Class(:DogLover)
)
Declaration(

ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)
)
AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(

:DogLover 
ObjectIntersectionOf(

ObjectMinCardinality(1 <http://nomagic.com/ontology/example-
case/case-06#has> :Dog) 
ObjectSomeValuesFrom(<http://nomagic.com/ontology/example-case/case-
06#has> :Dog)

)
)

)

8.14<<Anything>> with Self-Referential Subproperty

Thing  

{subsets holds}

-contains

-holds

Ontology(<http://nomagic.com/ontology/example-case/case-11>
Declaration(

ObjectProperty(:contains)
)
Declaration(

ObjectProperty(:holds)
)
AnnotationAssertion(rdfs:label :contains "contains"@en)
SubObjectPropertyOf(:contains :holds)
AnnotationAssertion(rdfs:label :holds "holds"@en)

)
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8.15<<Anything>> Holder with Subproperty

    
Ontology(<http://nomagic.com/ontology/example-case/case-18>

Declaration(
Class(:Acid)

)
Declaration(

Class(:Liquid)
)
Declaration(

ObjectProperty(:isCorrodedBy)
)
Declaration(

ObjectProperty(:isDissolvedBy)
)
AnnotationAssertion(rdfs:label :Acid "Acid"@en)
SubClassOf(:Acid :Liquid)
AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(

owl:Thing 
ObjectIntersectionOf(

ObjectMinCardinality(1 :isCorrodedBy :Acid)
)

)
SubClassOf(

owl:Thing 
ObjectIntersectionOf(

ObjectMinCardinality(1 :isDissolvedBy :Liquid)
)

)
AnnotationAssertion(rdfs:label :isCorrodedBy "is corroded by"@en)
SubObjectPropertyOf(:isCorrodedBy :isDissolvedBy)
ObjectPropertyRange(:isCorrodedBy :Acid)
AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

)    

8.16Class with Subproperty without a Range

Ontology(<http://nomagic.com/ontology/example-case/case-16>
Declaration(
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Class(:Game)
)
Declaration(

Class(:SoccerMatch)
)
Declaration(

ObjectProperty(:isACompetitionBetween)
)
Declaration(

ObjectProperty(:isPlayedBetween)
)
AnnotationAssertion(rdfs:label :Game "Game"@en)
SubClassOf(

:Game 
ObjectIntersectionOf(

ObjectMinCardinality(2 :isPlayedBetween)
)

)
AnnotationAssertion(rdfs:label :SoccerMatch "Soccer Match"@en)
SubClassOf(:SoccerMatch :Game)
SubClassOf(

:SoccerMatch 
ObjectIntersectionOf(

ObjectMaxCardinality(2 :isACompetitionBetween) ObjectMinCardinality(2 
:isACompetitionBetween)

)
)

AnnotationAssertion(rdfs:label :isACompetitionBetween "is a competition 
between"@en)
SubObjectPropertyOf(:isACompetitionBetween :isPlayedBetween)
ObjectPropertyDomain(:isACompetitionBetween :SoccerMatch)
AnnotationAssertion(rdfs:label :isPlayedBetween "is played between"@en)
ObjectPropertyDomain(:isPlayedBetween :Game)

)  

8.17Class with Necessary and Sufficient Property

Ontology(<http://nomagic.com/ontology/example-case/case-20>
Declaration(

Class(:CarManufacturer)
)
Declaration(

Class(:Manufacturer)
)
Declaration(

Semantic Modeling for Information Federation (SMIF) 0.9 265



Class(:SteeringWheelManufacturer)
)
Declaration(

Class(:WindshieldManufacturer)
)
Declaration(

ObjectProperty(:hasContractWith)
)
AnnotationAssertion(rdfs:label :CarManufacturer "Car Manufacturer"@en)
EquivalentClasses(

:CarManufacturer
 ObjectIntersectionOf(

ObjectMinCardinality(1 :hasContractWith :SteeringWheelManufacturer) 
ObjectSomeValuesFrom(:hasContractWith :SteeringWheelManufacturer)

)
)
EquivalentClasses(

:CarManufacturer 
ObjectIntersectionOf(

ObjectMinCardinality(1 :hasContractWith :WindshieldManufacturer) 
ObjectSomeValuesFrom(:hasContractWith :WindshieldManufacturer)

)
)
SubClassOf(:CarManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :Manufacturer "Manufacturer"@en)
AnnotationAssertion(rdfs:label :SteeringWheelManufacturer "Steering Wheel 
Manufacturer"@en)
SubClassOf(:SteeringWheelManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :WindshieldManufacturer "Windshield 
Manufacturer"@en)
SubClassOf(:WindshieldManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :hasContractWith "has contract with"@en)
ObjectPropertyDomain(:hasContractWith :Manufacturer)
ObjectPropertyRange(:hasContractWith :Manufacturer)

)

8.18Class With Property Having Unspecified Multiplicity
UML allows the cardinality of a property to be left unspecified. The concept modeling profile interprets unspecified 
cardinalities as being zero to many (“0..*”).

Ontology(<http://nomagic.com/ontology/example-case/case-21>
Declaration(

Class(:SoccerPlayer)
)
Declaration(

Class(:SoccerTeam)
)
Declaration(ObjectProperty(:consistsOf))
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertyDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

)
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