- % = T % T =

OBJECT MANAGEMENT GROUP

Date: December 2016

Semantic Modeling for Information Federation

(SMIF)

Version 0.9

OMG Document Number adtf/2016-12-01
Normative Reference: http://www.omg.org/spec/SMIF
Associated Normative Machine Consumable Files:

adtf/2016-12-02

For latest version please see:

https://github.com/ModelDriven/SIMF/tree/master/NextSubmission

Copyright © 2016, Object Management Group, Inc.

Copyright © 2016, Data Access Technologies, Inc. (Model Driven Solutions Division)
Copyright © 2016, PNA-Group, Ltd.

Copyright © 2016, No Magic Inc.

Copyright © 2016, 88 Solutions, Inc.

Copyright © 2016, Thematix Partners LLC

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

The IPR mode for this submission is Non-Assert.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

ii Semantic Modeling for Information Federation (SMIF) 0.9

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48
C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology”, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

Semantic Modeling for Information Federation (SMIF) 0.9 iii

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://issues.omg.org/issues/create-
new-issue).

iv Semantic Modeling for Information Federation (SMIF) 0.9

Table of Contents

Submission-specific Materiall..............ouiiieiii e 1

0 Submission Specific Material..............ooouuiiiiiii i 1
0.1 SubmissioN INtrOAUCTION. ... e e e e e e e e e e e e 1
O T8 o] o117 T o T =Y o TS 1
L0020 TS 10 1411 =1 PP 1
0.2.2 CoNtriDULOrS & SUPPOILETS.......uuiiiiiiiiiiiiiee et e e e e e e e e e e e e e e e e e e eeeeaeaaeeeesbbaeeeeeeeesnanas 1
(ORI o doTe) o] il oxo] (o= o | FENNNN PSSO 1
0.3.1 Resolution of Mandatory reqUIrEMENTS..........uueiiiiiiiiie e e e es 1
0.3.2 NON-MANAAtOry FEATUIES. ieiiei ettt e e e e sttt e e e e s ettt e e e e s sbbeeeeeesanbeaeeeeeeeeeeeeennne 5
0.4 Resolution of DISCUSSION ISSUES.........couuuiiiiiiiiiiii et e et e e e e e eaaa s 5
LS 1o o] o 1= TP OTS PP PR 6
1.1 BUSINESS NEEU. ...ttt e e e e e e e e e e e e e e e e eeeeaa e e e eeenneeas 6
L I TS Tolo] o1 YOO USSR PR 9
1.1.1 Semantic federation and iNtEGratioN...............oooii i 9
1.1.2 Expressing conceptual reference MOEIS.............coooiiiiiiiiiiiiiiiieeee e e e 10
1.1.3 Pivoting through conceptual reference MOodels............ccuuiiiiiiiiiiii i, 11
1.1.4 Mapping to information and data MOEIS............ccccuuiiiiiiiii e e 1"

A ©7e] a1 {014 11 =1 [o1= TSP UOTRUPPRRPN 12
3 NOrmative REfErENCES.........oooeeie e 12
4 Terms and DefiNitiONS.........oouuuiii e 13
5 SMIF Model SEMANTICS......cccoieieiieeeeee e 15
5.1 The SMIF Conceptual Model FOUNALION.................ccuuiieeiieiiceee e 15
TR R I o Vo T O RUOURRR U RRPOTRRN 16
ST 2 1Y/ o = P PR PPPPPPPPPP 17
5.1.3 Identifiable Entities and ValUES...........ooe i 19
ST [0 =Y o1 (1= PP 20
oI T = =] ol Lo =Y 01 1= USRI 20
5.2.2 Unique and Preferred [dentifiers...........ocoioiiiiieeeee e 21
5.3 Temporal and Actual ENtities.......cccooeieiiiii e e 26
5.4 Situations (UPPEILEVED. ...t e e e e e 29
5.5 Kinds of Types (MetatypPes).....coouuuiiiiiiiiiiiiii ettt 30
5.5.1 SMIF Language Metatypes...........eeiiiiiiiiiiii ittt e e et e e e e sate e eeeeaeenees 30
5.5.2 Full Meta-Type HIErarChy.........ocueiiiiiiie ettt e e e e et eeeeeeeennes 31
5.5.3 Domain SPeCific MeTatYPES.coii ittt ettt eeeteeeernararrne 31
5.6 Context and PropoSitiONS.ooi i e eaanas 33
5.7 Properties, Characteristics and Relationships..............ouvuiiiiiiiiiie e, 35
B5.7.1 Property ADSIFTACHON.eeiiii ettt ettt e e e ettt e e e e e b e e e e e anba e e e e e e aneeees 35
I O T T T 1] 1 PP 36
5.7.3 Property OWNer ADSIIACHON.coiiieeeecee eeraaa s 40
5.7.4 Associations and RelationShipsS........ccoooi oo 40
B5.7.5 RelatiONSNIPS.... oottt a e e e et aara 43
5.8 Composition and Sequencing of Actual Situations...............oooviiiiiicciie e 48
5.9 PatlernS.......oo e 53
5.9.1 PatterNsS — tOP IEVEL. ..ottt e e e e 54
5.9.2 Repeated Patterns.o e e e e e 54
5.9.3 Pattern Variables and BindiNgs.oooo oo 56
5.9.4 Example pattern definition in UML Profile......... ..o 57

Semantic Modeling for Information Federation (SMIF) 0.9 v

5.9.5 Example pattern definition in SMIF MOdel......... ..o 57

5.9.6 Pattern MatChing.........c.eeiiii i 59
5.9.7 Pattern Matching EXampIe........cooo i 59
5.9.8 Computed VariabIes...........coooiiiii e e e e e e e e e e e e aanan 62
5.9.9 Subset Variable EXamMPIE.cooo i aaeaane 64
5.9.10 Controlling Person Pattern in the SMIF MoOdel.............oooiiiiiiiiiii e 65
LT K011V = To] o] o T TR PSSP 66
5.10.1 Mapping Components EXamPIe...... ... 66
5.10.2 STIX Concrete Data MOEL...........uuuiiiiiiiiiieiee e e e e e e e e e e e aaeeeaeaeeaeeeernnnas 67
5.10.3 OTR Conceptual Reference MOEL..............ooiiiiiiiiiiii e e 70
5.10.4 STIX/ OTR MappiNg RUIE.......cooiiiiiiiiie ettt e e et e e e s e st e e eeeeeeesennennes 71

6 SMIF Conceptual MOAEL...........coooeiieiiieeeeee e 72
6.1 Diagram: SMIF PacCKagEsS.........uuuuuiiiiiiiiiiiiieeeeeee e ettt e e e e e e e e e e e e e e aaaaa s e e e e e e eennnnneeeeeeas 72
7 SMIF Conceptual Model::ASSOCIAtIONS...........uuuuuiiiiiii e 74
7.1 Diagram: ASSOCIAtIONS.eiiiiiiiiee e e e e et e e e e e e e e e e e e e e e 74
7.2 Class ASSOCIALION.......ceiiiiiiiee ettt e e e e e e e e e e e e ettt e e e e eaaeeeeeeeaaaeeeeeeeeeennnnns 75
7.3 Class ASSOCIAtION TYPE.....coiiiiiiiii ettt et e e e e e e e e e et e e e e e e e eeennanes 75
8 SMIF Conceptual Model::EXPreSSiONS.c..uviiiiiieiee et 76
8.1 Diagram: EXPIrESSIONS.uiiiiiiiiiia ettt e e e e e e e e e e e e e st b e e e e e e e e e e e e e e eean e e e 76
8.2 Class Constant REfErENCE........ccooi i e e e 76
8.3 Association Constant ValUe............ooooiiiiiiiiiie e 77
8.4 Class EQUAIITY.......uuuuiiiiiiiiiiiei ettt 77
8.5 Association Equality CONSIraiNt.............uuuiiiiiiiiiiiiiie e 77
8.6 Class EVaAlUALION........oiii e e e e aaaans 78
8.7 Association EXpression CONTEXL...........uuuiiuiiiiiiiii e e e 78
8.8 Class EXPression CONLEXL.........oooiiiiiiiiiiccec et eeeaaans 78
8.9 Association EXpression Evaluation.................oiiiii oo 79
8.10CIass EXPresSiON NOGE.......uuuuiiii it e e e e e e e e e e e e e e e e et e e e eeaanns 79
8.11 Class FUNCHON Call........... et a e e e e e e e et e e eeeenns 79
8.12 Association FUNCHON Called...........cooi i e 80
8.13 Association Function Implementation..............c.ii i 80
8.14 Class FUNCHON TYPE.......ooiiiiiiiiiii et e e e e e e e e e e e e e e e e et e et e e e e e e eeaeaaaas 80
8.15Class ODbjJect Operation TYPE.....cccc oo i it e et e e e s 81
8.16 AsSOCIatioN OO Targel......ccooii it e e e e e e e e e e e e e eaaaas 81
I N To Tor b= L o] T =TT U Y o= T 81
T R T O = TR N = Y= 7 | PSP 82
8.19Association Traverse TRrOUGN.......coooeei e e aaa s 82
9 SMIF Conceptual Model::Facets...........cooooiii 83
LS B I B 1T To [=10 B = To =] £ PR PP 83
S I O =TT 0] (=T [] USSP 83
1S TR T O F= 1T =T P 84
9.4 Class Facet of Entity <<Relationship>>..........coooiiiii e, 84
1S IR T O F= 1oL o F= 1T P 85
1S BT O F= 1T o 1= TP 85
10SMIF Conceptual Model::Identifiers...........oooooeeeiiiiiiiii e, 86
10.1Diagram: IAENTIfIErS.........cooo i e e e e e e e e e e eaaa s 86

Vi Semantic Modeling for Information Federation (SMIF) 0.9

10.2 AsSSOCIAtION IAENIfiICAtION. ... oo e 87

10.3Class Identifier KKValUE>>........uuiiiiiii e e 87
10.4 Association Identifier in NameSPacCe.cooo i 88
10.5Class IRl Identifier KKValUe>>..........iiiiiiii et aaeaaeeaas 88
T10.6Class Name SKValUB>> ... e e e e et e e e e e e e e eea s 88
TO.7 Class NAMESPACE.uuuuuiaie et e ettt a e e e e e e e e e e e e e e e e et e eaeees e e e e eeeeaaaeeeeesanaeeeennnnnns 88
10.8ASSOCIAtION NAMUNG. ...ttt e e e e et e e e e e e e e e e e e eennes 89
10.9 Association Prefered Identification............c.coooi oo 89
10.10 Class Technical Identifier KKValue>>...........ouuiiiiiiiiiiiiie e 90
10.11 Class Term <<Value>><<InterseCtion>>...........cooiiiiiii e 90
10.12 Class Text ldentifier KKValUE>>.......cooiiiieeeeee e e e e e e e e e e e e e e e eeeaes 90
10.13 Class Unique Identifier <<Value>> ... 90
10.14 Class Unique Text Identifier <<Value>><<Intersection>>..............c..ccccciiiiiiiiiiiiiiiiiiineeeen. 91
11 SMIF Conceptual Model::Kernel...........oooovoeiiiiieeeeeeeee e 92
11.1 Diagram: Kernel ASSOCIAtIONS.cccviiiii i e e e e eaa e 92
11.2 Diagram: Kernel Identifiers. 93
11.3 Diagram: Kernel LeXiCal SCOPE.........coouviiiiiiiiiiii e e e e 94
11.4 Diagram: Kernel Metadata..............uuueiiiiiiiiiiiiiie e 95
11.5 Diagram: Kernel Properti€s..........uuuuu oottt e e 95
11.6 Diagram: Kernel RUIES SUMMAIY........ooiiiiiiiiiii et eeeeees 96
11.7 Diagram: Kernel TOP LEVEL...... ...t e e 97
11.8 Diagram: KEINEl TYPES. ... ittt ettt et e e e e e e e e e e e e e b e e e e eeeeennes 98
11.9 Diagram: KerNel ValUES..........ccoo oottt e e e e e e e e e e e e e s 99
12SMIF Conceptual Model::LeXiCal SCOPE......cccoeeiiiieiiiiiieee e 100
12.1Diagram: LeXiCal SCOPE..........uuiiiiiiiiiiiei ittt e e e e e e e e eeeees 100
12.2Class Conceptual PACKagE.cuuiiiiiiiiiiii et e e eeeees 100
12.3 Ass0Ciation DefinitioN.........coooiiiiiii e e 101
JZ N O =TT [Vo [Lo L= 101
12.5Class LexiCal REFEIENCE.cooo i e e e e e e e e e e e e s nnnnnnees 101
12.6Class LeXiCal SCOPE......cci et a e e e e e e e e e e e e e e e e e e enaen e e eeennnaas 102
12.7Class LOGICal PACKAQE.ouuuiiiueiiiiii ittt e e 102
12.8Class Mapping PaACKAGE.ccceeeiiiiiiiiiie ettt e e e e et e e e e e e e e e aeeeeeaaaaaennnnnnnes 102
P28 107 = 11V o o = PRSPPI 102
12,10 Class PaCKaAQE.uciiiiiiii ettt e e e e e e e e e e e et e e e e araa s 103
12.11 Class PhysiCal PaCKage......ccccoiiiiiiieiiiiceee et 103
12.12 ASSOCIAtION PrefiX......iiiiiiiiiiiiiiiii e e et e e e e e e e e e e e aaeeaeeeees 103
12.13 Class PrefiX SKKValU>> ..t 104
12.14 Association Scope Of REfEIENCE.........uciiiiii i 104
12.15 Association Scope REfErENCE.........ceiiiiiiiiiiie e 104
12.16 Association Statement.... ... ———————— 104
13SMIF Conceptual Model::Mapping.........ueeeeeeeiiiiiieeieieieeeeeeeeeeeeeeeeeee e eeeeeeeeeeeesaa e eeaeeane 106
13,1 DIagram: FACAUES.uuuiiiiiiiiiiiee ettt e e e e e e e et e e e e e e e e e e e e e e e aaaeees 106
13.2Diagram: Mapping RUIES.eu it e e e e e e e e e eeeees 107
13.3Class Computed Facade........ccooo oo 107
13.4 Association Concrete Map ENd...........ooooriiiiiiiiiiie e 108

Semantic Modeling for Information Federation (SMIF) 0.9 vii

13.5Association Concrete Pattern Body...........oooiiiiiiiiiiii e 108

LRSI T O =TT = Tor= T [T 108
13.7 Association Map Rule TYpe ASSEITION.......ccouiii i e e e 108
13.8 Association Mapped Variable.......... .o 109
IR L O =TS V=T o] o 1o T 109
13.10 Class MatCh ENd.........ooooiiii e e e e 110
13.11 Class MatCh RUIE........ .o e e e e e e e eeaans 110
13.12 Association Reference Map ENd..........oooo oo 111
13.13 Association Reference Pattern Body............coouviiiiiiiiiiiiie e 111
13.14 Association Representation............oooo e 111
13.15 Class Representation RUIE..............oooiiiiiiiccc e e 112
13.16 Association Represented CONCEPL........cooi i 112
13.16.1 Enumeration ASSertion Strength..............oooiiiiiiiii e 112
14 SMIF Conceptual Model::Metadata.............oooeviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 114
14.1Diagram: Metadata..........cooo o 114
14.2 Association Assertion Statement...........oooiiiiii e 115
G 1 @7 = T3 1= 1 (o] o PSPPI 115
14.4 Association Definition Relationship..............uioiiiiiiiii e, 116
14.5Class Information Source <K<KROIE>>.........ccoiiiiiiiiiiice e 116
14.6CIasS Metadata..........ooeiiiiiiiiei i e et e e e e e e e e e e e e e e e a e nnnne 116
14.7 Association Metadata relationShip..........coooo i 117
14.8 Association Record of an Entity............oooomimiiiiiiiiii e 117
14.9 Association Source of INformation.............oooiiiiiii 117
14.10 Class StatemENt.... ... e 118
15SMIF Conceptual Model::Patterns...............euvviiiiiiiiiiiiiiiiiiieeeeeeee e 119
15,1 DIagram: PatternS.ttt e e e e e et eeae 119
15.2C1aSS COMPULE. ittt e e e e e e e e e e e e e e e e eeeeeenesnnnnnn s 120
15.3 AsSOCIAtION EXCIUSION..... oo et e e e e e eeeaean s 120
15.4Class EXPression VariabIe..........c.ooo oo 120
15.5CI1ass FOCUS Variable..........coooiiiiieeee ettt e e e e e e e e e e e e e e s neeeeeees 120
15.6 Association MatCh RUIES..........coo o 120
15.7Class Part Variable.ouuiiiiiiiiiee e e e e e e e e e e eeees 121
15.8Class Pattern <<InterseCtion>>..........oo e 121
15.9 Association Pattern BiNdiNgS........couuuuiiiiiiiiiii et 121
15.10 Class Pattern MatCh.............ueeiiiiiiiiiiie e e e e e eeees 122
15.11 Association Pattern MatChes..............eeiiii e 123
15.12 Class Pattern Of TYPe....coo oot e e 123
15.13 Class Pattern Variable...........ccooiiiii et 123
15.14 Association Pattern Variables..............oooo 124
15.15 Class Proposition Variable...............ee e 124
15.16 Association Qualified Proposition............coooiiiiiiiiiiiieee e 125
15.17 Association Situation MatChes.............uiiiiiiiiii e 125
15.18 Association Subject of Pattern Relationship............cceeiiiiiiiiiiice e 125
15.19 AsSOCiation SUDSEHING........uuuiiiiiiiiiiii e 125
15.20 Class Type Pattern Variable...............ooeiiiiiiii e 126

viii Semantic Modeling for Information Federation (SMIF) 0.9

15.21 Class Variable BiNdiNg........coooiiiiiiiiiiiiee ettt 126

15.21.1 Enumeration Variable Qualification...............oo i 126
16 SMIF Conceptual Model::Properties.............uuueuiueeiimiiiiiiiiiiiiiiiiiiiiiiiee e e e e eeeeeaens 129
16.1 Diagram: CharacCteriStiCS.ooiiiiiiii e 129
16.2DIagram: PrOPEItIES.e ittt e e e e et e e e e e e e e e anb e e e eeeees 130
16.3 Class ANNOLAtioN ProPerty....... ..ot e e e eeeaes 130
16.4 Association Bound INAiVIAUAL..........ccoooiii i 131
16.5Association BoOUNd PrOPertY..........e i 131
16.6 Association Bound SUDJECL...........ccoiiiiiiie e 131
16.7 Class Characteristic BiNAING..........uueiiiiiiiiiiiiiie e 132
16.8Class CharacteriStiC TYPE........ooiiiiiiiiiiiceee e e e e e e e e e e e e e e e e e e 132
16.9Class Owned Property BiNAiNgG..........eoiiioiiiiiiiie e 133
16.10 Class OWNEd Property TYPE. ... et 133
16.11 Association Properties Relationship..........ccouuiiiiiiiii e 133
16.12 Class Property BiNAiNg.........ouuuuiiiiiiiiiii s e e s 134
16.13 Class Property OWNET..........oooiiiiiecccee et e e e e e e e e e e e e et e e e eaaa s 135
16.14 Class Property OWNEE TYPE.....oooiiiiiiiiieeeii e e e e e e e e e e e e e e e e e 135
16.15 Class ProPertY TYPE. ..o ittt e e et e e e e e e e e e et e e e e aaaa s 135
17 SMIF Conceptual Model::RECOIAS..........uuiiiiiieeiieieeee e 137
17.1DIagram: RECOMUS.ueiiiiiiiiiiiie ettt et e e e e e e e e e e ettt ettt e e e e e e e e e eeatan e e eaeeeees 137
T7.2C1aSS RECOINU. ... ittt e st eeeeaaaaeas 138
17.3C1aSS RECOIA TYPE....ceiiiiiiiiiiiieieee ettt e e e e e e e e e e e e e e eeees 138
17.4 Association Subject of RECOrd TYPE......ccouiiiiiiiiiiiiii e 138
18 SMIF Conceptual Model::RelationShips...........ccooeiiiiiiiiiiiccee e 139
18.1Diagram: RelatioNSNIPS.u i i 139
18.2Class RelatioNShip.........oiiiiiiieiec e e et eaaaas 140
18.3 Class RelatioNShip TYPE....ccoiiii it e e e e e e e e e e e e e e e e aaaaaeeeeeenns 140
19SMIF Conceptual MOdel::RUIES............uueiieiiiiiiiiiiieiiieeiieeeeeeeeee e eeeeereeeeennnnanes 142
19.1Diagram: General RUIES.uuiiiiiiiiiiiiiie et e e e e e e e e e e e e s e eeeeeeeeeeeeenes 142
19.2Diagram: Property Constraints............uuuuiiiiiiiiii i 143
19.3Diagram: RUIES iN CONLEXL.......ccooiiiiiiieecce e 144
19.4Diagram: RUIES SUMIMAIY......uuuuiiiiiiii et e e e e e e e e e e et e e e e e ra e e e eesan s 145
19.5Diagram: TyPe CONSIrAINTS.ccoiiiiii i e e e e e e e 146
LR] O =TT @7o T To [11 o] o F= | P 146
19.7 Class Conditional RUIE.............uuuiiiieie et e e e e eeees 147
19.8Class Covering CONSIIaINt..........ooiiiiee e e aeeeeees 147
19.9 Association Covering CONSIraiNt...........uuiiiiiii e 147
19.10 ClasS DISJOINT......ueeeiiiiiiiieee ettt ettt e et e e e e e e e e e e e e e e e nnnannnees 147
19.11 Class ENUMEIAtEA.oouuiiiiiiiiii et e e e e e e e eaaa s 148
19.12 Class EQUIVAIENT.......oi e e e e e e e e e e e e e e e e e ee e re s 148
19.13 Class Facet Classification Constraint..............oooiiiiiiiiiiiii e 148
19.14 Association Generalization..............ouiiuiiiiiiii e 149
19.15 Class Generalization CONSLraint..............uuuiiiiiiiiii e era e 149
19.16 Class MultipliCity CONSIraINt...........eeiiiiiiiiiiiiiiii e 150
19.17 Association Multiplicity Reference. ... 151

Semantic Modeling for Information Federation (SMIF) 0.9 ixX

19.18 Association MultipliCity Target..........coouiiiiiiiiiiii e 152

19.19 Class Property CONSIraiNt.........ooiiiiiiiii e e e 152
19.20 Class Property Transitivity Constraint............oooiiiiiiiii e 152
19.21 AsSSOCIation Property TYPE.....oooo oot e e e e e e eeaaes 152
19.22 Class Property Type CONSIraint.........ccccuiiiiiiiiiiiiie e 153
TO.23 ClasSS RUIE....ceeeeci ettt a e e e e e e e e e e e e e e e e ee e e e aeee e e e esn s 153
19.24 Association Rule CONSIraiNS.uueiiiii e 154
19.25 Association Rule SubsSUMPLIiON..........ooooiiii e 154
19.26 Association Specialization...............coouuiiiiiiii e 154
19.27 Class TyPe CONSIIAINT... ...ttt e e e e e e e e e e e e e e eenees 155
19.28 AsSOCIation UNIQUE SEt........cooiiiiiiiiiiiciii e e 155
19.29 Class Uniqueness CoNSIraint...........oooo i 155
20SMIF Conceptual Model::SituationS..............ueuieeiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeee e eeeeeeees 157
20.1Diagram: SiUALIONS.ccoo i e e e e e e e e e 157
20.2Class Actual Situation <<INterseCtion>>............ccooiiiiiiiiiiiii e 157
20.3C1aSS SIUALION.eieeiiiee e e e e et e a e e aaa 158
20.4 Class SitUALION TYPE...uuuiiii it e 158
21SMIF Conceptual Model::TOP IEVEL.........uuuee e 160
21.1Diagram: TOP LEVELottt e e e e 160
21.2C1aSS ACUAI ENTIY ..o 161
P IR Y X=X To Tor b= [g I AN =T =T o (o o P 161
P B Y O P T3 0o] (= PSP 162
21.5Association Extent of CONteXt.......ccoooo i 164
21.6Class ldentifiable ENtity.........cccoimii e 164
21.7 ASSOCIAtIoN NEGALION.......ciiiiiii e e e e e eeees 167
P IR T O F= 1T o o o =] 1 o) o 1 167
21.9Class Temporal ENtity..........oooiiiiiiieeee e e e e e e e e e e e e e e e 168
27110 ClaSS TN i eiiiiiii et et e et e e e e e e e e e e e e e e e e 169
22SMIF Conceptual MOAel::TYPES.uuuuuiiiiiiiiiiiiiiii e e e e e e eannn e e e eeeeees 171
22.1Diagram: TYPE-INSIANCE.......ci i i e e e et e e e e e e e e eaas 171
W = To = L g B 5/ 1 T 172
P Y O 1= Tl =l o 11V Y/ o1 TSSO PPUPPR 172
22.4 AssOCIation EXIENT Of TYPE...uuuuiiii i 173
22.5C1ass INterSECHON Ty P .t e e e e e e e e e e e e e eeeeeae 173
A Y O F= TR Y o1 Y PSSP 174
22.7 Class UNION TYPE.....eeeeiiiiiiiaiae ettt ettt e e e e e e e e e e e e e sttt et e e e e e e e e e e eesnan e e eaaeeee 175
23SMIF Conceptual Model::ValUEs............oeuiiiiiiii e 176
23.1DIagram: ValUES......cooiiiiiii ittt et e e e e e e e e e e e e e e a e aaaeees 178
23.2C1aSS BaSE UNit TP .ttt 178
23.3Class QUAaNtity KiNG.......cooiiii et e e 179
23.4 Association Referenced System of UNitS...........ooooiiiiiiiiiiii e 179
23.5Class Scalar Quantity <KValUe>>........uuiiiiiii e 179
23.6Class Structured Value <<SValue>>.. ... e 179
23.7Class Structured Value TYPE.......cooo ittt e e e e eeeees 180

X Semantic Modeling for Information Federation (SMIF) 0.9

23.8Class System OFf UNIES........uuuiiiiiiiiiiiiie e e 180

A e O F= TR U Lo T A 1Y o= P 180
23.10 Class Unit Value <KValUE>>. ... e e e e e e e e e e e et eeeennns 181
P22 T b T O = =T 1T 182
23.12 ClaSS VaAlUE TYPE.....eeeeeiiiiiiiiiieee ettt e e e e ettt e e e et et e e e e e e e eeeaeeenes 182
7 SMIF UML Profile (NOrMAtiVE)..........uuuuueiiiiiiiiiiiiiiiiiiiiiiiae e ansaansannnnnnnannnes 183
7.1 Concept Modeling Profile SemMantiCs...........couuiiiiiiiiiiii e 183
7 R B O = 2= ERSPUPUPPRRN 184
7012 INSEANCES. .. eeeeieiiiee ettt ettt e e ee e e e e e e e e e e aaanbe ettt eeeeeaeaeeeeaeeaeeeenn e aaaaaeees 185
7.1.3 Class GeNEraliZatioN.........cooiii oottt e e et e e e e e e e e e e e e e e er e e e e e e e e e eeeeennns 185
A0 S (0] o 1= (= U 190
I T X = T T = 1o o 1TSS 191
7.1.6 Property and association end hierarchies.cc..eoiiiiiiii e 191
717 ASSOCIAtION ClASSES........eiiiiiiiiiiii ettt e e st e e e s et e e e e nnn e e e e e s 192
A8 T 2N 1 o] = 1T o TS OPPPP 193
7.1.9 Specific KINAS Of ClaSSES........ueeiiiiieee e s e e e e 193
7.1.10 ASSErtions abOUL CONCEPLS.ciiiiiiii i ittt e e e e e e e e e e e e e e e e aaaeeeseesae s ansesbaeaaeessrannas 196
7.1.11 Constraining properties and asSOCIAtioONS.............ccooiiiiiiiiiiiiieeeee e e 197
7.1.12 Tightening @ PrOPEItY’S TYPE....ueeeiiiiiiie et e e e e e e e e e e e e e e e aee e e e e e e e rabaaaas 198
7.1.13 Inferring a type from its ProPErtiES.ceviiiiie e e e e e e e e 199
A I e oY= 42 1 = T o P 201
I T o [NV = 11T | (0] o= o S PUOPPPR 201
7116 EQUIVAIENT ClASS...... ittt ettt et e e e e e e e e e e e e e s nenneennnen e e e eeeeeennnn 202
7.2 SMIF Profile::SMIF Concept Modeling Profile Reference..............oooooiiiiiiiiiiiee, 202
7.2.1 Diagram SMIF Conceptual Modeling Profile...........ccuuiiiiiiiiiii e 202
7.2.2 Stereotype ANNOTALION..... ... ittt e e e e e e e e e e e e e e e e e eeanans 203
7.2.3 1.23 Stereotype ANNOtation PrOPerty.........oooiiiiiiiiiiiiiie e 203
724 1.24 Stereotype ANYENING.......oo i 203
7.2.5 Stereotype Base UNit ValUE.............cooiiiiiiiiiiii et s 203
A S (=1 (= 011 oTC Y O 1 (=T [] YU 203
7.2.7 Stereotype CharaCteriStiC.o i e e s ee e e e e s 204
7.2.8 Stereotype CoNCEPt MOEL........couieiiiieiie et e e e e e s anneeeee e as 204
7.2.9 Stereotype Disjoint With........ooo i a e e e e e 204
7.2.10 Stereotype ENUMIEIALES.cooiieieeeeeeee et e e e e e e e e e e e e e e e st e e e e e eenraaaas 204
7.2.11 Stereotype EQUIVAIENT ClaSS.......coiiiiii i e e e e e e e e e e e s e e e e e e e e a b 205
7.2.12 Stereotype EQUIVAIENT PrOPEITY.......coiiiiiiiiiie ettt ettt e e e e eee e e e et e e e e eenntaeeaeeeens 205
7.2.13 1.2.13 Stereotype External REfEr&NCE..........uviiii i 205
7.2.14 Stereotype Has ValUe...... ... e ettt e e e e e e e e e et e e e e e eeeeenans 206
7.2.15 Stereotype Information Model[CCB2] e 206
7.2.16 Stereotype INTErSECHON.o e e s 207
7217 StEreOtyPE INVOIVES.coiiiiiiiiie ettt e e e sttt e e s s 207
7.2.18 Stereotype IS IN CONTEXL.ueiiiiiiiiee et e et e e e s e e e s eeae s 207
7.2.19 Stereotype MOAEI[CCB3]ttt e e e s e e e e s et ee e e e s e e e e as 207
7.2.20 StEreotyPe PRaSE.........ueiiiiiiiiiiiie ettt e et e et e e a s 208
7.2.21 Stereotype QUAaNTity KING.........ooiuiiiiiiiie e 208
7.2.22 Stereotype RelatioNShip..........uuuiiiiiiiiiiice e 208
7.2.23 StEreOtyPE RESOUICE.cce e ittt e e e e e e e e e e e e e e e e et ae e e s bbb e eeeeeeessanns 208
7.2.24 Stereotype SUFICIENT........oi et e et e e e s e e e e e e e ns 209
7.2.25 StEre0tyPE SYNONYIM.....iiiii it e ettt e e ettt e e e sttt e e s ee e e e e e s s eaaeeaeasasaaeeeesanssseeeesaanssseeaesannnaanans 209
LIRS (=1 =Yo7/ oI 1T o TSR 209
7.2.27 Stereotype UNIt VAIUE.oooiiii e 210
7.2.28 StEreotype ValUE.........o..eeeiiie ettt et a e 210
7.3 UML Profile — SMIF Patterns & Model Mapping Profile............cccooriiiiiii i, 211
7.3.1 Structure of Rule SpeCifiCations...........ooo i 211

Semantic Modeling for Information Federation (SMIF) 0.9 Xi

7.3.2 RUIB MOEL...... . o e e s e e e s e e e e e e e e 211

4 TR T 5 (=T o (= F7=T 1 = o o T PSS 212
7.3.4 MapPING RUIES..... ..ttt e e e a bttt e e e e ab et e e e e e anbeeeeeeeaanbbbbnnnnnes 212
7.3.5 <<SeleCt>> VariabIes.ccoo i a e e e e e e e e e e e e aaanaas 214
7.3.6 Multiplicity constraints in Patterns........ ..o s 215
7.3.7 Subsets Of Pattern Variables............o.ooo oo 216
7.3.8 <<Pattern Variable>> computations and constraints..............ccccoeeriiiiiiiiiiiiiiii e 218
7.3.9 <<Pattern Variable>> eXPliCit.........cccouiiiiiiiii e 219
7.3.10 Pattern PrEeCEAEGNCE.u ittt et e e e e e e e e e e e e e e bbb e e e e e eeeeanas 220
4 T b B 1= L= Tl oo SRS 220
7.3.12 Facades and Representation Computations..............oiiiiiiiiiiieiiiiiiee e 221
7.4 SMIF Profile::SMIF Patterns Profile Reference...........ccooooo oo 224
7.4.1 Diagram SMIF Patterns Profile.............uueeeiiiiiiiiiiii e 224
T7.4.2 StEreotyPe EXCIUAES.oeiiiiiiiiiie ettt ettt e et e e e e e e e s et e e e s ennsae e e e e annn s 224
A R) (=1 4= 011 oYY = o= o =PRI 224
744 Stereotype MatCh...... .. ettt e e e e e eeennas 224
7.4.5 Stereotype Mapping RUIE....... ... et e e e e e e e e e e 225
TA.6 StEreotyPe SEIECL......cooi et 225
7.4.7 Stereotype Pattern Variable............ooo i 225
7.4.8 Enumeration Variable QUalifiCation.............ooo i 226
7.4.9 Stereotype REPIESENTS........oiiiiiiiiiiiii e e e e s s e e e s e 227
7.4.10 Stereotype Pattern RUIE............oiiiii e s e e e 227
7.4.11 Stereotype RUIE MOEL..........cco e e e e r e e e e e e e e e e e e e e aaaas 228
7.4.12 StEreotyPe SUDSELS.o a e e e e e e e e e e 228
7.4.13 Stereotype SUDSUMES..... ..o e e e e e e e e e e e e e e e eanaas 228
7.5 SMIF Profile::SMIF Computation RUIES...........ouuimiiiiiiiiei e 228
7.5.1 Diagram SMIF Computation RUIES.........ccooiiiiiiiiiii e 229
7.5.2 Class EXISISRUIE.........co ettt et e e e e e e e e e e e e e ee e e e e e eeaaaeeeeennnn 229
7.5.3 Class LiSt First.......eeeiiiiiiiiiei ittt ettt e e et e e e e e e e e e e e s e s e e neeneeeeeeeeeasnn e e eeeaeeenns 229
T7.5.4 Class MaPID......cooo ittt e e oo h et e e e e e b et e e e e e hbee e e e e e e bttt et et nbrberrbanaae 230
7.5.5 Class Rule ComPULALION..........coiiiii e 230
7.5.6 ClasS SUMMAIIZE......cieiii e e ittt e e e e et e e e e e et e e e e eeaaaeeeeessas s sssastananeeeeetaeaaeeesessannnsnnnn 230
7.6 Profile mapping to SMIF Model (NOrMative)........coouviieiiiiiiiii e 231
7.6.1 SMIFProfileToModelMapping::High level representation............ccccooieiiiiii e 231
7.6.2 SMIFProfileToModelMapping::Mapping FUIES.cocoiiiiiiiiiiii e 237
7.6.3 Class Annotation value MapPing..........ueeieiiiiiiiieeiiie e e e s e e bbee e e e e e e aeeaas 237
7.6.4 Class ASSOCIAtION MaPPING.......iuuuiiieeiiitieiee ettt e e ettt e e e s s et e e e e s aaeeeeeaesaneeeeeaeaanseeeeaeaaaaaaaaaaaaaeas 238
7.6.5 Class Class MaAPPING.......uuuuuueiiiiiiieeeeeeeiieieieite e e eeeeeaaaeeessasaaaaaaresraeeeeeeaaaaaaeesssaaaaaassseeeeessssnnns 238
7.6.6 Class Class Property MapPPiNg......cccoiiiiiiiiiiiiiii et e e e e e e e e e e e e e e e e e e e s e e as e e e e e e e eeraaannes 239
7.6.7 Class Containment MaPPING........cccoiiiiiiiiiii e e e e e e e e e e e e e aaeeeeeesseaasnaabrasaeesaraanes 239
7.6.8 Class ENUMEration MapPiNg.......coeoiiuiiiiieeioiiiiiee e et e e e s sttt e e e s et e e e e s sneaaeeeesssnsseeeaesansaaeeaesaeaeeeas 240
7.6.9 Class Equivalent property chain Mapping............ueveiiiiiiiieeiiiiiee et e e e e e e e e e e e e aaeaes 240
7.6.10 Class Equivalent property Mapping.......ccccceeeeeeeeeeieeiaeaee et ee e e e e e e e e e e e e e s e eeeeeeeeeeeaaeas 241
7.6.11 Class Equivalent With Mapping........ooo o e eeen s 241
7.6.12 Class Generalization MapPing.....coooiii oo ee eeenenanes 242
7.6.13 Class Generalization set COVEering MapPiNg..........ueeieiiiiiiiie e 243
7.6.14 Class Generalization set disjoint MapPiNg..........ueeiiiiiiiii e 243
7.6.15 Class IS in CONEXE MAPPING. ..o ueiiiiiiiitii et e e s e e e s s e e e e e e as 244
7.6.16 Class Mapping FUIE MaPPIiNG.....ccceuiuuueiie i e ettt e e e ettt e e e st e e e e s st e e e e s e s e e e e e e e e e e e e eeeas 245
7.6.17 Class Named element Mapping.......cooioociiiiiiieiiiee e e e e e e e e e e e e e e e s n e eaeeesrnn s 245
7.6.18 Class Pattern property Mapping...........uuueeeeeiiieieeeeeeeieecccc e e e e e e e e e e e e se s re e e e e aaaaaeaasaeeas 246
7.6.19 Class Property hierarchy Mapping.........cooooiiiiiiiiieeeee e 247
7.6.20 Class SYNONYM MAPPING. . .uttietiiutreireetiaieeteeeaateeeeeesaaeeeeeeesaasseeeaeaaasssereessassseeeessannnnnnnnaaaasaaaaaass 271
8 SMIF Mapping to OWL 2 (NOrMALIVE)........eeeeiiiiiieeiieieeeeeeeeee et eeeeeeeeeeeeeenes 275

xii Semantic Modeling for Information Federation (SMIF) 0.9

B ClaS S e 275

8.2 Class GeneraliZation..............oooiiiiiiiiiiieee e 275
8.3 Class with Datatype Property...........ooooiiiiiiiiiiiiiee et eeenes 275
8.4 Class with Self-Referential Object Property..........ccccuuiiiiiiiiiiiii e 276
8.5 Class With ODJECE PrOPEITY........uuuiiiiiiiiiiiiie e 277
8.6 <<Anything>> with Datatype Property...........ccuuueiiiiiiiiie e 277
8.7 <<Anything>>with Self-Referential Object Property............ccouiiiiiiiiiiiiiieeeiie 278
8.8 <<Anything>> with ODbject Property............coooi e 278
8.9 Class with Object Property Without RANge...........cooieiiiiiiiiieeeeee e 278
8.10Class With SUDPIOPEITY......coeuuiiiiiieie e et e e et e e e e e e e eeeenns 279
8.11 Class with Universal Quantification Constraint on Property I|..........ccccooiiiiiiiiiiiiieeee, 280
8.12Class with Universal Quantification Constraint on Property Il...........ccccoooiiiiiiiiiiis 280
8.13 Class with Existential Quantification Constraint on Property............oooooiiiiiiiiiieeeeeeen, 281
8.14 <<Anything>> with Self-Referential Subproperty...........cccccooriiiiiiiiiiiiiii e 282
8.15<<Anything>> Holder with SUbProperty..........cccccci i, 283
8.16 Class with Subproperty without @ Range..........ccccoiiiiiiiiiiiiiiccce e, 283
8.17 Class with Necessary and Sufficient Property.............oooviriiiiiciiiiii e, 284
8.18 Class With Property Having Unspecified Multiplicity..............ooouiiiiiiiiii e, 285

Semantic Modeling for Information Federation (SMIF) 0.9 xiii

Table of Figures

1o 18 LT TR A I 10V PRSP 16
FIgure 5.2: ThiNG NS fYPe.....ooiiie e e e s e e e e e e 17
Figure 5.3: FIdO iS @ dOQ @XAMIPIE........uuiiiii it e ettt e s e s e e e e e e e eeeeeeaeaestnnn e e eennnaaaes 18
Figure 5.4: UML Type and Instance EXample..........ooo i 18
Figure 5.5: Identifiable Entities and VAlIUES.............uueiiiiiiiiii et e e e e e e e e e s e 19
Figure 5.6: Identifiable Entity with Value CharacteristiC.............couiiiiiiiiiii e 20
Figure 5.7: BasiC IAENTTIEIS. . ..ot e e e e e e e e et e e aae e e e e e s e e e nbaaaraaeaaaaes 20
Figure 5.8: Fully expanded type and identifier instance model..............cceeiiiiiii e 21
Figure 5.9: UNIQUE IAENTIFIEIS.eiiiiiiiiiee ettt e e e e e e e e e e e s e e st eseeeeeeeasbaaeeaeeaees 22
Figure 5.10: Full [dentifiers PACKAGE.........oouuiiiiiiiiiiee et 24
Figure 5.11: Full Identifier EXamPIE...........cceiiiiiieeeie et e e e e e e e e e e e aaeeeeaeaeaaaenes 25
Figure 5.12: Temporal and Actual ENtities.c.uuiiiiiiiii e 26
Figure ,5.13: Actual Thing Hierarchy EXamMPI€...........cooiiiiiiiiiiieeeee et e et e e e eeenanas 27
Figure 5.14: Temporal Instance EXample...........coo e e e e e e e e e eeees 28
Figure 5.15; Situations - TOP LEVEL.........eeeeieeeeeeee e ee e e e e e e e e e e e e e aaaeeaaaeeans 29
FIGUIE 5.16: IMELAtYPES. ...ttt e et e e e e e e e e e e e e e e e e aaaaaaaaeaaees 30
FIQUIE 5. 17 MEBIAIYPES. ... ettt ettt e e e et e e ae e e e e e e se e s aaat e e eeeeeessaaeeaaeeanes 31
Figure 5.18: Domain Specific Metatype EXample...........coo e 32
Figure 5.19: Context and PropoSitiONS...........ooiiiiiiiiiiiie et e e e e e e e e e e e e e s e e e e eeaaeenes 33
Figure 5.20: Definition of Property Type & Property Binding..........cooiiiiiiiiiii e 35
Figure 5.21: Definition of Characteristic & Characteristic Kind............cccccccoooiiiiiiiiiiie e 37
Figure 5.22: Defining and Using @ CharacteristiC............cooouiiiiiiiiiiiiiiee e 38
Figure 5.23: Instance Model Defining Characteristic & Value for an Entity..........cccccccceiiiiiiiiiiiiiiiiee 39
FIGUIE 5.24: ASSOCIALIONS. ..ottt e e e e e e e e s e s e e e e e e e e e e e e eees 41
Figure 5.25: ASSOCIAtION EXAMIPIE.........iiii et e e e e e e e e et e eeeeaaaentnnn e e e eanaaae 42
Figure 5.26: SMIF model instances for an assoCiation.............c.ueeeiiiiiiiiii e 42
Figure 5.27: Defining RelatioNShiPS.cooiiiiii e e e e e e e e e aaaenes 44
Figure 5.28: Defining and Using @ RelationShip...........c.uuiiiiiiiiiii e 45
Figure 5.29: Relationship Involving RelatioNSNiPS........oouiiiiiiiiiiee e 46
Figure 5.30: Relationship Involving Relationships — instance model...............coooiiii 47
Figure 5.31: ACtUAl SIUATIONS. ...t e e e e e e e e e e e e e e e e e aaaaeeeeeessessansasransenenes 48
Figure 5.32: Initial Situation EXamPIE.........ooo e 49
Figure 5.33: Example Situation After Theft..........oooiiiii e eenes 50
Figure 5.34: Example Situation After Mediation..............ooiiioiiiii e 51
Figure 5.35: Sequence of Situations EXamPle.............ocouiiiiiiiiiiiiccce e 52
Figure 5.36: FUll Pattern MOGEL.........o.eiiiii et e e e e e e e e e e as 53
Figure 5.37: Patterns - Top LeVEI MOAEL...........oouiiiiiiiie et et a e e e e e e e aeaeeeeeeees 54
Figure 5.38: Repeated Pattern EXample..........ooo e 55
Figure 5.39: Pattern Vari@bles...........cooo oot eea e 56
Figure 5.40: Patterns in UML Profile EXample...........oooi ittt 57
Figure 5.41: SMIF Model Example of Pattern Variables.................oooiiiie e 58
Figure 5.42: Pattern Matching MOEL..........coooiiiiii e 59
Figure 5.43: Potential instance of @ pattern............c...uuiiiiiiiiii e 60
Figure 5.44: Binding of @ SiNgle variable.............coo e 61
Figure 5.45; Full Binding Of Pattern.............uuiiiiiiiiiiiiie e e e e e e e e e e e e e sa e e e aaaenes 62
Figure 5.46: Subset and EXPression Variables...........cueiiii i 63
Figure 5.47: Subset Variable Example in UML Profile............ccciiiiiiiiiieee et 64
Figure 5.48: SMIF Model Instances of the Controlling Actor Pattern..............ccevii e, 65
Figure 5.49: STIX Mapping OVEIVIEW.uuuiiiiiiiiiiiieeiee e e e e ee e e e e e e e aae e e e e s s e s s ae e e e eeeeesnanaaaaaaeenes 66
Figure 5.50: STIX Concrete Model Fragment.............eeiiiiiiiiiii e 68
Figure 5.51: OTR Conceptual Reference Model Fragment..............ooooiiiiiiiiiiiiiiceceee e 70
Figure 5.52: STIX - OTR Threat ACtOr RUIE........cccoi it 71
Figure 7.1: Representation Rule Internal STruCtUre...........oooviiiii i 213
Figure 7.2: <<Select™ EXaMPIE..... .. it e e anaaae 215

Model diagrams not indexed for unknown reasons.

Xiv

Semantic Modeling for Information Federation (SMIF) 0.9

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
« CORBA/IIOP

e Data Distribution Services
¢ Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

¢ UML, MOF, CWM, XMI
e UML Profiles

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

¢ CORBAServices
¢ CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Semantic Modeling for Information Federation (SMIF) 0.9 XV

Signal and Image Processing Specifications

All of OMG?’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman/Liberation Serif — 10 pt.: Standard body text

Helvetica/Arial — 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier — 10 pt. Bold: Programming language elements.

Helvetica/Arial — 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification via the report form at:

http://issues.omg.org/issues/create-new-issue

XVi Semantic Modeling for Information Federation (SMIF) 0.9

This page intentionally left blank.

xviii Semantic Modeling for Information Federation (SMIF) 0.9

Submission-specific material

0 Submission Specific Material

0.1 Submission Introduction

The SMIF submission team is pleased to present a revised submission to the “Semantic Modeling for Information Feder-
ation” Request for Proposal ad/2011-12-10

The IPR mode for this submission is Non-Assert.

Clause 0 of this document contains information specific to the OMG submission process and is not part of the proposed
specification. The proposed specification starts with Clause 1. All clauses are normative unless otherwise specified.

0.2 Submission Team

0.2.1 Submitters

The following companies submitted this specification:
e Data Access Technologies, Inc. (Model Driven Solutions Division)
e Cory Casanave
e No Magic, Inc.
e Jim Logan
e PNA-Group, Ltd.
e Sjir Nijssen
e 88 Solutions
e Manfred Koethe
e Thematix Partners LLC
e FElisa Kendall

0.2.2 Contributors & Supporters

Contributors
e Tibco Software Inc.

o Paul Brown

0.3 Proof of concept

No Magic has a released product implementing most of the SMIF profile and OWL mapping. Prototype efforts for
mapping are expected but have not yet fully validated the model and mappings.

0.3.1 Resolution of Mandatory requirements

6.5.1.1 Proposals shall define the SMIF Conceptual Model as a | The conceptual models are specified in clause Error: Reference
model of the concepts required to model information and achieve | source not found using UML/SMIF notation expressed using the
federation using SMIF. This model shall be a conceptual domain SMIF conceptual modeling profile.

model of SMIF itself, expressed in the SMIF Notation (see re-
quirement 6.5.2.2).

Semantic Modeling for Information Federation (SMIF) 0.9 1

6.5.1.2 The SMIF Conceptual Model shall define the concepts
necessary for creating conceptual domain models (CDMs), suffi-
ciently general to express the semantics being represented by the
information modeling constructs in the languages identified in re-
quirement 6.5.3.1, including the following capabilities:

Due to the similarity of needs, the SMIF model is one language
that may be used for different levels of abstraction. The level of
abstraction and purpose of a specific model is specified.

a. General capabilities for modeling all relevant as-
pects (i.e., all rules, laws, etc.) of concepts, in-
cluding (but not necessarily limited to) the defi-
nition of: individual things, relationships, classi-
fication of individual things (including multiple
classification), sub-classification and inheritance
(including multiple inheritance), roles (that de-
scribe how individual things are involved in var-
ious processes, compositions and relationships),
composition and constraints.

Capabilities relevant to information federation are included.
Modeling of “all rules and laws” is considered out of our infor-
mation federation scope, but follow-on efforts could address ad-
ditional concerns. Concepts applicable to rules and laws may be
modeled like any other concept.

All the following are included:
e Individuals
e Relationships
e C(Classification (of anything)
e Multiple classification

e Sub-classification (Generalization), including multiple
inheritance.

e Roles
e Constraints

Specific models of compositions as patterns are intended to be
included in SMIF models.

b. Definition of one or more names by which users
refer to a concept, as well as one or more sepa-
rate reference identifiers that would normally be
hidden from users. (This is required to maintain
the stability of concept references across multi-
ple languages, communities and viewpoints.)

Concepts may have any number of names and identifiers. Names
and identifiers may be scoped by a context.

C. Definition of the context of concepts, allowing
for the grouping of concepts such that no single
dominant decomposition is required (that is, in
addition to just a hierarchical grouping, allow
for a multi-dimensional separation of concerns
[Ossher1999] delineated by multiple contexts).

Context is a first-class SMIF concept that relates a set of things
to applicable assertions that hold for them. Something may be in
any number of context across multiple contextual dimensions.

d. Definition of patterns of reusable, parameterized
conceptual structures and the use of such pat-
terns within a context.

Patterns are a first-class concept.

€. Definition of units that describe what can be
measured about various conceptual quantities
and asserting that some conceptual quantity is
measured in specific units.

Units are represented using unit types bound to quantity kinds.

f. Ability for federated definition of concepts; that
is, allowance for the definition of a concept in a
CDM such that it can be modified and/or ex-
tended across multiple contexts and models.

SMIF uses an open world assumption that may be closed in a
specific context. As such definitions may be federated and ex-
tended.

Semantic Modeling for Information Federation (SMIF) 0.9

6.5.1.3 The SMIF Conceptual Model shall define the concepts
necessary for creating logical information models (LIMs), capable
of representing information context, information structures, in-
tegrity rules, derivation rules, views and viewpoints as may be
found in the languages referenced in requirement 6.5.3.1, but not
be bound to any particular data representation or schema lan-
guage, including the following capabilities:

Due to the similarity of needs, the SMIF model is one language
that may be used for different levels of abstraction. The level of
abstraction and purpose of a specific model is specified.

a. Usage of one or more terms and/or concepts de-
fined in a CDM, as identified by MBRs between
a LIM and the CDM, to define the semantics of
information elements in one or more LIMs.

A CDM concept may be represented by any number of LIM con-
cepts.

b. Identification of concepts from a CDM (“what
can be known about a subject domain”) as being
required or optional in a LIM (“what may or
must be included in a particular information
structure”), with appropriate cardinalities.

A CDM specifies the semantics of the domain, not the data. Data
cardinalities may be different from real-world cardinalities. What
we can know, must know and do know may be independent. This
is accomplished by using the “represents” relation and mappings.

c. Ability for different LIMs related to the same
CDM to represent different (and possibly incom-
patible) subsets of information about conceptu-
ally the same things (as semantic precision does
not imply universal agreement).

See response to (b).

d. Ability for a LIM to close the definition of a
concept that has a federated definition in the re-
lated CDM, fixing it relative to a specific context
in the CDM relevant to the LIM. (Once a defini-
tion is closed, it can then be assumed that no fur-
ther statements will be made about that concept
within the context relevant to a particular LIM
thus allowing for the application of defaults and
constraints impacting that concept.)

SMIF rules operate on a closed set of models based on their con-
text whereas the models may be extended or refined in other con-
texts. Context is the foundation for closing the world.

€. Ability to define viewpoints that specify views
on a CDM or LIM that act as effective contexts
for a particular purpose relevant to one or more
other LIMs, including formation of views from
composite concepts.

Each LIM is effectively a viewpoint that is mapped to the under-
lying CDM using MBRs. See Error: Reference source not found.

6.5.1.4 The SMIF Conceptual Model shall define the concepts
necessary for creating model bridging relations (MBRs), suffi-
cient to enable independently conceived models at all levels
(CDM, LIM, PDS) to be federated, such that the similarities and
differences between elements defined in each can be expressed,
including the following capabilities:

Due to the similarity of needs, the SMIF model is one language
that may be used for different levels of abstraction. The level of
abstraction and purpose of a specific model is specified.

a. Ability to relate identical and similar informa-
tion concepts that have been independently con-
ceived and represented in information models
using the same or different information modeling
languages or physical schema.

Identical and similar concepts are mapped using representation
and mapping rules. The mapped models may or may not be inde-
pendently conceived.

b. Ability to handle differences in name, structure,
representation, property sets and underlying se-
mantic theories.

Mapping rules provide for differences in naming and structure.
Mapping rules may be defined between compatible semantic the-
ories. SMIF

Semantic Modeling for Information Federation (SMIF) 0.9

C. Ability to relate the same information across
views that share the same underlying concepts
and to specify one view of a model from another
(projection).

See the response (b).

d. Ability to state the purpose for an information
structure in one model relative to the related
structure in another model. (Examples of pur-
poses include creating, reading, updating and
deleting recorded information and providing a
snapshot in time, measurement, expected value
or required value of a property of or association
between information records.)

The purpose of a mapping may be specified in the textual docu-
mentation of a mapping; no other support is deemed necessary.

6.5.1.5 Proposals shall define a Kernel as a subset of the SMIF
Conceptual Model with the minimum set of foundational con-
cepts necessary in order to precisely define all other concepts
within the SMIF Conceptual Model. Proposals shall provide a
formal logic interpretation of the semantics of the SMIF Kernel,
expressed in a formal logic such as Common Logic as defined in
ISO standard 24707.

The kernel is defined as a subset of the SMIF model expressed in
the diagrams under the package “Kernel”.

The kernel is defined as a mapping to the f{UML subset of UML,
which provides a formal logical interpretation of the semantics in
Common Logic. As the kernel is also specified in UML, no spe-
cific mapping is required.

Like MOF, fUML does not comprehend SMIF subsets and rede-
fines restrictions, as such these restrictions are not enforced by
the f{UML kernel.

6.5.2.1 Proposals shall define a SMIF Metamodel as a MOF or
SMOF model of the abstract syntax of a modeling notation suffi-
cient for completely defining any conceptual data model (CDM),
logical information models (LIM) or model bridging relation
(MBR).

A MOF meta model of SMIF is included. It is directly derived
from the SMIF conceptual model by removing SMIF extensions
not valid in MOF. MOF does not comprehend SMIF subsets and
redefines restrictions. As such, these restrictions are removed in
the MOF model and must be enforced by other means. They re-
main restrictions on the model structure.

6.5.2.2 Proposals shall define at least one graphical concrete
and at least one textual concrete syntax for the SMIF Metamodel.
The graphical notations shall be specified using the OMG dia-
gram definition standard based on the abstract syntax.

The SMIF graphical notation included leverages UML and the
SMIF profile for UML.

While various “fact modeling” textual notations have been evalu-
ated in creating SMIF, no text notation is included at this time.

It is anticipated that other notations will be defined for the SMIF
model in later efforts.

6.5.2.3 To the greatest extent practical, the SMIF Metamodel
and notations shall be based on reuse or adaptation of existing
modeling and logic languages. Proposals shall provide justifica-
tion when this is not considered to be the best solution.

The SMIF graphical notation utilizes UML . In keeping with the
philosophy of SMIF, the relationship to other models is ex-
pressed as mappings.

6.5.2.4 The content of models expressed using the SMIF Meta-
model shall be Web addressable resources, each having a unique
Web identity in support of Linked Open Data.

As a MOF meta model SMIF models are web addressable. The
OWL/RDF mapping of SMIF also produces web addressable
model content.

6.5.2.5 Proposals shall provide an MBR model bridging from
the SMIF Conceptual Model to the SMIF Metamodel, specifying
how CDMs, LIMs and MBRs based on concepts defined in the
SMIF Conceptual Model may be represented using the SMIF
Metamodel and so expressed in SMIF notations. Conversely, all
statements made as part of any model represented using the SMIF
Metamodel shall have a precise and well-defined semantic map-
ping to the SMIF Conceptual Model.

The SMIF meta model is a minor transformation from the SMIF
conceptual model using the same semantics, terms, constructs
and model identity. For this reason, no mapping was deemed nec-
essary.

Semantic Modeling for Information Federation (SMIF) 0.9

Proposals shall define normative MBR models, in the SMIF Lan-
guage, that bridge the SMIF Conceptual Model to metamodels for
the following existing languages, in order support the federation
of information defined in these languages.

a. Entity-relationship (ER) modeling, with a meta-
model such as that proposed for IMM

b. SQL Data Definition Language (DDL), with a
metamodel such as that proposed for IMM

c. XML schema definitions (XSDs), with a meta-
model such as that proposed for IMM

d. Unified Modeling Language (UML)

e. Semantics of Business Vocabularies and Rules
(SBVR)

f. OWL web ontology language, with the meta-
model as given in ODM

g. RDF Schema (RDF/S), with the metamodel as
given in ODM

Mappings are specified for UML and OWL. Additional mappings
may be included as user demand indicates. Experience indicates
that mappings should be independent of the foundation specifica-
tion such that they can be developed and maintained indepen-
dently. This helps to avoid monolithic specifications.

6.5.3.2 Proposals shall provide a minimum of four non-norma-
tive examples drawn from different domains, demonstrating the
overall applicability of the proposed SMIF Language to the defi-
nition, extension, validation, federation and integration of infor-
mation models and their physical schema representations.

Extensive examples are provided in OMG submissions based on
SMIF. These include “threat/risk” (OMG document SYSA/2016-
0-02) and draft versions of FIBO. Other multiple other small ex-
amples are included in this document.

Numerous examples are provided in this specification.

0.3.2 Non-mandatory features

6.6.1 Proposals may provide a direct mapping from the SMIF
Metamodel to RDF, RDF/S and/or OWL, as an exchange format
beyond that provided by XMI based on the SMIF Metamodel ab-
stract syntax.

A mapping to OWL-2 is included.

6.6.2 UML Profile for SMIF

6.6.2.1 Proposals may define a profile of UML that represents
all or part of SMIF using UML stereotypes, tagged values and
OCL constraints.

6.6.2.2 If a UML Profile is included, an MBR shall be defined
between the profile and the SMIF Metamodel.

6.6.2.3 Ifa UML Profile is included, proposals shall describe
the fidelity of the profile and any information loss between the
profile and corresponding models expressed in SMIF notation.

A UML profile for SMIF (at all levels) is included and defines
the graphical syntax for SMIF. Other notations may be added in
the future.

0.4

Resolution of Discussion Issues

References to and naming of individuals.

All SMIF entities may have multiple names and identi-
fiers. This includes individuals as well as types and
metadata. Each term is a first-class entity that may be
defined in a context independent of the original defini-
tion. Context may also be used to cope human lan-

guages.

SMIF

Semantic Modeling for Information Federation (SMIF) 0.9

1 Scope

1.1 Business Need

Our ability to share, manage, analyze, communicate and act upon information is at the foundation of the modern
enterprise and open, collaborative government. Information sharing is essential for an integrated approach to enterprise
supply chains, fighting terrorism, business and government intelligence, inter-organizational collaboration and
integrating enterprise applications. Yet, this essential capability has remained difficult and expensive to achieve in
information systems which are frequently isolated, stove piped, and difficult to integrate. The inability of our systems to
share information hampers the ability of our organizations to collaborate and for our processes, services, and
information resources to work together. Much of our information technology budgets are consumed by attempts to
overcome this “semantic friction” in our systems and organizations are currently spending more on application
integration than on building new applications [Gartner2011]. The overall human and financial cost to society from our
failure to share and reuse information is many times the cost of the systems’ operation and maintenance.

In general, information sharing can be understood at a number of different levels.
o Infrastructure is the technology used to maintain data and move it from one place to another.
e Format is the way data are structured, its syntax.

e Semantics deals with how data is interpreted as meaningful information. For an information system, this interpreta-
tion is reflected in how the data is processed in order to carry out the business purpose of the system.

We are effective at dealing with data infrastructures today, and we are somewhat effective at handling multiple data
formats, albeit via manual and point-to-point integrations. However, we are not very good at understanding how the
semantics of data in independent data sources are related. Too often, how each system interprets shared data is implicit
in the specific design and operation of the systems. Differences in structure, terminology, viewpoint, and notations make
system-specific data structures hard to integrate, negatively impacting the capability to federate these systems or the
information they contain.

Full semantic integration requires information systems to all properly and consistently interpret the data exchanged
among the systems. This, in turn, requires that there be an explicit understanding of what the desired semantic
interpretation is at a business level. A semantic model can be used to express this understanding in a way that can be
validated by the business stakeholders of the systems being integrated. And, given a computational underpinning for
such a model, it can then also be used for supporting analyses and deductions necessary to carry out the necessary
integration.

Unfortunately, for most existing information systems, the desired semantics have not been effectively modeled. The
following are some scenarios in which semantic integration is, nevertheless, critical. Diverse and disparate efforts are
currently being made to address these scenarios, examples of which are included with the scenario descriptions below.
But, as of today, there is no consistent way to address modeling for semantic integration in general across all these areas.

e Data integration between business systems. Many large businesses have a critical need to better integrate sys-
tems in support of complex products. Not only may their business area have suffered financial distress, but
there may be a need for new government reporting or new analytics and integration due to acquisitions. Such
organizations typically have multiple layers of existing data bases, middleware specifications and XML
schemas for use in web services, event brokers, etc. Most, if not all, of the existing systems and technologies
still need to be supported. There may be dozens or even hundreds of enterprise systems involved and hundreds
or thousands of small applications and spreadsheets.

Example. A common approach chosen for integrating major business systems is to create a “canonical model”
of the data within a domain and then map data into and out of that model using data mapping tools.
Unfortunately, while there are various proprietary tools to support such an effort, there is no widely available

6 Semantic Modeling for Information Federation (SMIF) 0.9

standard-based tooling for the job. For instance, while UML can be and is used for the modeling part of the job,
a general modeling notation such as UML is not for the conceptual level of modeling required, and there is
currently no standard profile to adapt it to the task nor for mapping data into and out of a canonical model in
general. (The Model Driven Message Interoperability specification provides some support for the latter, but
only limited to message format transformation for the financial services domain.)

e Data federation across multi-disciplinary teams. Developing complex systems often involves many parties who
are widely distributed in location and time. Such development therefore requires efficient and effective infor-
mation exchange during the complete development and operations lifecycle of the system. This can only be
achieved by realizing semantic integration between all involved parties.

Example. The European Cooperation for Space Standardization (ECSS)' addresses this issue by introducing the
concept of a global conceptual model. This model is used in the implementation of “space system data
repositories” as federations of physical databases. These databases are geographically dispersed and change
over time but are logically integrated in an interoperable architecture, so that data can be exchanged effectively
and reliably. Such data repositories need to be stable over a long period of time, so modeling must be at the
semantic level independent of technology and tools. This modeling allows for upgrading the implementation
technology without changing the model and data itself. The primary aim of this is to substantially reduce the
system development and operation costs while achieving greater precision and federation.

o Information federation across an industry. Major industries, such as finance and telecommunications, need to
deal with the representation of information relative to multiple contexts, taking into account different business
processes, specific modeling goals and needs, visualization and implementation requirements or the existence
of overlapping modeling domains. These differing contexts and conditions may require emphasizing different
aspects and characteristics of essentially the same information. The representation of a concept in one view may
be different from the representation of the same concept in another view as the context-specific details that are
relevant differ from view to view. Information can be described using different yet compatible paradigms (e.g.,
domain-specific languages vs. UML and profiles) yet the meaning and semantics of the information should stay
the same regardless of the format and viewpoint. This, again, highlights the need to focus on a common core
model of shared semantic concepts.

Examples. Some examples of efforts to deal with industry-level information federation are the Shared
Information and Data (SID) Model, developed by the TM Forum [TMForum], the Common Information Model
(CIM) developed by the Distributed Management Task Force [DMTF] and the Reference Information Model
(RIM)developed by Health Level Seven [HL7].

e Information sharing and federation of threat and risk information, Threats and risks are increasingly multi-di-
mensional in nature — spanning physical space and cyber space. Threat actors understand and exploit our stove
piped approach to sharing and analyzing information which leads to ineffective collaboration and mediation.
Only by federating information across multiple domains such as cyber, physical, critical infrastructure, crimi-
nal, intelligence and defense, irrespective of technical and political boundaries, can we effectively counter
multi-dimensional intentional threats, natural events and system failures.

Examples. Attacks on our critical infrastructure have and will combine cyber attacks with physical attacks. This
has been seen in exploits of our electric power grid where physical weaknesses are combined with Cyber to
harm our physical infrastructure. By combining Cyber, criminal and terrorist information we will be better able
to deal with these critical threats.

' ECSS is an initiative established to develop a coherent, single set of user-friendly standards for use in all European space

activities [ECSS].

Semantic Modeling for Information Federation (SMIF) 0.9 7

Data federation across government organizations. Information sharing has been recognized by governments as
a key enabler for purposes as diverse as fighting terrorism to financial transactions. There has been some
progress in standardizing exchange schemas, which is a big step ahead of no standards at all, but the need exists
to ensure that there is no ambiguity in the semantics of the exchanged data in order to safely enable the reuse of
that data. In addition, any such standard must accept that there are and will be other such standards and that
these also need to be federated.

Example. The U.S. Information Sharing Environment (ISE) “provides analysts, operators, and investigators
with integrated and synthesized terrorism, weapons of mass destruction, and homeland security information
needed to enhance national security and help keep our people safe” [ISE]. ISE depends on fixed schemas for
information sharing, i.e., the National Information Exchange Model (NIEM) and the Universal Core (UCORE).
These schemas provide XML Schema definitions that are claimed to be sufficiently common and universally
understood by relevant stakeholders regardless of the IT systems being used within their intended domains.
Even within NIEM, though, hundreds of overlapping schemas have been defined.

Model federation across different modeling metamodels. The OMG itself has multiple standards related to
modeling. These standards were originally created independently, resulting in difficulties when users try to use
them together to share information embodied in models using the different standards. A conceptual domain
model, distilled from the existing OMG modeling standards, would facilitate their comparison, acknowledging
the commonality (or lack thereof) between the different concepts and definitions and bridging those concepts.

Example. OMG specifications related to just process modeling include BPMN, UML Activities, BPDM, and
SPEM. A case in point in the difficulty this has caused relates to the UML Profile for DODAF and MoDAF
(UPDM), a wide ranging profile supporting US Department of Defense (DOD) and UK Ministry of Defence
(MOD) architecture frameworks. The UPDM community wishes, for example, to be able to use BPMN process
models in the context of their UML Profile. A stopgap tactic has been to define an additional UML Profile for
BPMN, which allows BPMN-looking diagrams to be drawn in UML, but it is clear this is not a strategic
approach. A better approach would be to create a “process modeling” conceptual domain model that would
then permit model bridging relations between BPMN, UML, BPDM and SPEM models, allowing sharing
across users’ process models

Schema Evolution. As information systems evolve to support changing enterprise needs, the datasets they use
need to evolve as well. While some changes are additive and readily accommodated, others involve factoring
and evolving concepts. At their core, such changes require the evolution of the dataset schema underlying the
system and the migration of the data from the old to new schemas. Such changes also impact the logic that in-
teracts with the dataset and every external interface and related data structure. While there is some tooling
available for schema migration, there is little available to aid in the evolution of the logic and external inter-
faces. The absence of semantic understanding of the relationship between the schema and external interface
data structures makes tooling to aid in the evolution problematic.

Example. 1t is common for an enterprise to represent the concept of customer as a composite of information
about the person and the role that person plays with respect to the enterprise. Evolving needs, including
regulatory requirements, require many enterprises to now factor this concept so that they can represent that the
same person may play other roles as well, such as employee. Such semantic understanding is required to
enforce constraints such as a prohibition against the same individual playing both the customer and employee
role in a transaction. The absence of semantics-based tooling makes such changes labor intensive and error
prone.

Current standards for information and data modeling may be effective at defining a particular data model for a particular
application using a particular technology to solve a particular problem. But, as highlighted by the above examples, the
methodology for using these standards at a higher level of abstraction — namely for cross-domain and cross-

Semantic Modeling for Information Federation (SMIF) 0.9

organizational semantic modeling — is not as well or as widely understood. As a consequence, the models available
within a given organizational context are often not well suited to use across multiple dimensions or technologies, and so
poorly support the needs for sharing and federation.

1.1 Scope

111 Semantic federation and integration

A semantic information federation approach is the one leveraged in this specification. A semantic approach focuses on
concepts and their meaning, not how they are represented in any particular schema, syntax, vocabulary, or technology.
Mappings then define how various data formats and vocabularies represent those concepts. Concepts are well defined in
a conceptual reference model — a more precise way to define a vocabulary or taxonomy. Conceptual reference models
may be called “ontologies”, or “abstract data models” but some ontologies or abstract data models are essentially
programs and not conceptual.

The essential difference between a conceptual reference model and a concrete application model is that it describes real
world things and their relationships as understood by stakeholders. It is a model of the world’, not a model of data or a
system. When we have a concept like “Incident” in our model, “instances” of incidents are real things that happen — not
a Java object or stream of XML. However, we may also have concepts of actual things, such as a specific incident.

* A conceptual reference model is conceptual in that it is an expression and formalization of how a community
conceives of their domain, problem area, business or environment. It is not a model of the solution or a
technology. This could also be called a “conceptual domain reference model”.

* A conceptual reference model is a reference model in that it is intended to supply reference concepts for what
information in various systems means, to “connect the dots” between application or data models. It is not
intended as a concrete application or solution model in and of itself.

These real-world reference concepts are the pivot points between different ways to name, describe or talk about the
things we deal with every day. This “world of things” is what we understand — of course there can be many names for
and descriptions of the same thing.

How do we know it’s the same thing? In some cases we can describe something so precisely and mathematically that we
can be sure, in many cases it is just a shared concept based on a definition and how that concept relates to other
concepts. We allow for both precise and pragmatic definition of things.

In real-world scenarios such as finance and risk risk management we also have to be fully aware of how much we trust
various information sources. It is common, if not the general rule, that different information sources will have conflicting
information about the same things. How do we know what to trust? This specification provides the basis for trust, in
capturing the provenance of information, but it leaves the evaluation of trust to the capabilities that utilize or analyze the
information — or to the stakeholders who must make decisions based on it. This is a common pattern in this approach,
providing the basis for decisions but not the specifics for how to make those choices.

A conceptual reference model has some similarities to a canonical data format in that it attempts to capture cross-
stakeholder information needs — but it abstracts above the data format, technology, terminology and even the specific use
case and structure for that information.

2 Or more generally, real or possible worlds.

Semantic Modeling for Information Federation (SMIF) 0.9 9

1.1.2 Expressing conceptual reference models

As stated in 7.4.3, conceptual reference models are models of the world — or at least how communities conceive of the
world. This is differentiated from models of data (e.g., an E/R model or XML Schema) or models of software (e.g., a
Java program). In their pure definition, Ontologies’ are conceptual models, however not all ontologies or ontologies are
conceptual and many are intended for building semantic applications using specific “reasoning engines”, not as
reference models. Ontology languages are typically optimized and restricted for their intended class of reasoning engine,
not to capture domain concepts in general.

Of course, human natural languages are the most common way to express concepts. Natural language is used in the
definition of our concepts but those definitions are augmented with more formal assertions.

There can be confusion between the language used to express a model and what it models. For example, while Entity-
Relational (E/R) was designed for SQL data models it can be used conceptually. At the other end of the spectrum many
ontology languages have been used to express data models or to support specific forms of inference based computation.
The language does not make a model conceptual (or an ontology or a data model), what is being modeled does. Of
course some languages are better than others for conceptual reference modeling and mapping than others, [SMIF] is
used because it is designed for expressing conceptual reference models and mappings to various forms of data.

Our goal in this specification is to utilize a set of conceptual reference models as the pivot point between different data
models and syntaxes for expressing information about real-world threats and risks. While using a conceptual reference
model in this way is not new, there has not been a well-accepted standard for doing so. None of the well accepted
modeling languages are specifically designed for conceptual reference modeling and mapping — most are designed for
software modeling (data, procedural computation, or inference).

The Unified Modeling Language (UML) was originally designed for modeling object-oriented software, but is also used
for other purposes and is easily extended with profiles. We are using a profile of UML based on Semantic Modeling for
Information Federation (SMIF). UML is a well-accepted modeling language with widely available resources — SMIF
provides a standard way to use UML for the purpose of conceptual reference modeling and mapping. The combination
of UML and the SMIF profile provides an expressive, and automatable way to express the conceptual reference models
and mappings. Any standard conformant UML tool can import and manage the profile and the conceptual reference
model but special tooling is required to automate mappings.

The intent of the conceptual reference model and mappings is that a tool or infrastructure developer can take that model
and interpret it and transform it as appropriate for their own technology stack and data formats. They may then use that
technology stack to implement the information sharing and federation capabilities described conceptually. However, this
specification makes no assumption about what that implementing technology stack may be or how it is implemented. In
addition, this specification makes no assumption about a new “intermediate data format” based on the conceptual
reference model- the conceptual reference model has no normative data format — it maps to multiple possible data
formats that already exist. Keeping the “middle” conceptual and virtual is a way to help resolve the “data format wars”
that plague many attempts to federate where yet another data format may be unwelcome.

Mapped data formats must, of course, be used in any implementation — ultimately you need an explicit data (or
language) syntax to communicate and process data. Each of the mapped data formats such as STIX or NIEM may be
used to express threat & risk data within their domains. There is also growing interest in the “Semantic Web* > which
uses the “Resource Description Framework Schema” (RDFS) language as well as the “Web Ontology Language”

3Ontology: 1 : a branch of metaphysics concerned with the nature and relations of being. 2 : a particular theory about the
nature of being or the kinds of things that have existence.[www.merriam-webster.com]. However, ontologies have
become associated with a particular branch of formal languages such as OWL and Common Logic that support logical
inference.

*The term “Semantic Web” refers to W3C’s vision of the Web of linked data. Semantic Web technologies enable people
to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data are empowered by
technologies such as RDF, SPARQL, OWL, and SKOS. [http://www.w3.org/standards/semanticweb/]

10 Semantic Modeling for Information Federation (SMIF) 0.9

http://www.merriam-webster.com/

(OWL) or the Simple Knowledge Organization System (SKOS) to describe the web of data on the internet. The
semantic web technologies are well suited to data federation. The conceptual reference model can be mapped to
semantic web technologies generated from the operational threat and risk (OTR) conceptual reference model, using the
SMIF specification. Conceive

113 Pivoting through conceptual reference models

Schema-A Schema-B

Conceptual
Reference
Models

59014253
52014253

CET TR LR

Data Real World (As we cncei\re it) Data
Source A . Source B
[=niiml
Bl e

Figure 5 Illustration of pivoting through a conceptual reference model

The illistration above shows how conceptual reference models provide the “pivot point” between different schema for
various data sources. The conceptual reference model describes the world (or a possible world) as we conceve it.
Schema describe data, that data is about the same “real world”. Where schema elements are mapped to the same
concepts their data can also be mapped or federated. Any number of schema (or other data descriptions) can pivot
through the same concepts and thus provide for mappings between any combination of data sources.

114 Mapping to information and data models

Conceptual reference models are not intended to define data schema for specific applications, but to define the semantics
behind those schema by mapping them to concepts. Each data schema to be mapped is imported into a model and a
“mapping model” defines how the data structures in a concrete schema represent the common reference concepts. Only
those concepts that need be shared or federated with other data schema need be mapped. An implementation of this
specification is then able to map between and federate information in these different schema.

Semantic Modeling for Information Federation (SMIF) 0.9 1"

2 Conformance

The Conformance clause identifies which clauses of the specification are mandatory (or conditionally mandatory) and
which are optional in order for an implementation to claim conformance to the specification.

Note: For conditionally mandatory clauses, the conditions must, of course, be specified.

There are five distinct types of conformance. These are listed below. Unless otherwise stated these types of conformance

are independent.

1. Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface and/or
API that enables instances of concrete SMIF metaclasses to be created, read, updated, and deleted. The tool must
also provide a way to validate the well-formedness of models that corresponds to the constraints defined in the
SMIF metamodel. Abstract syntax may be further refined as either:

a. Conceptual model conformance — corresponding to all elements not included in the packages “Rules” &
“Mapping rules”.

b. Pattern abstract syntax conformance — corresponding all conceptual model packages.

2. UML Profile conformance. A tool demonstrating UML Profile conformance provides a user interface and/or API
that enables instances of SMIF UML notation to be created, read, updated, and deleted. Note that a conforming tool
may provide the ability to create, read, update and delete additional diagrams and notational elements that are not
defined in SMIF. UML Profile conformance may be further refined as either:

a. Conceptual Modeling Profile Conformance — All elements defined for the conceptual modeling profile,
clause Error: Reference source not found

b. SMIF Rules profile conformance - All elements defined for the SMIF Rules profile, clause Error:
Reference source not found.

3. Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid SMIF models, including models with profiles defined and/or applied. Model
interchange conformance implies abstract syntax conformance. A conforming SMIF tool shall be able to load and
save XMI as a SMIF MOF meta model.

4. Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret SMIF
semantics, e.g., data transformers, code generation, model execution, or semantic model analysis.

Where the SMIF specification provides options for a conforming tool, these are explicitly stated in the specification. In a
number of other cases, certain aspects of the semantics are listed as "undefined" or “intentionally not specified” or “not
specified”, allowing for domain- or application-specific customizations. Only customizations that do not contradict the
provisions of this specification will be deemed to conform to it. However, models whose meaning is based on such
customizations can only be interchanged without loss with tools that support the same or compatible customizations.

This specification comprises this document together with XMI serialization contained in machine-consumable files as
listed on the cover page. If there are any conflicts between this document and the machine-consumable files, the
machine-consumable files take precedence.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these do not apply.

12 Semantic Modeling for Information Federation (SMIF) 0.9

List of normative references. (specific reference to be included)

[UML]

[MOF]
[ODM]
[OWL-2]

[NIEM]
[WGS-84]

[JCGM 200:2008]
[NIST-ST]
[NIST-800]

[BFO]
[MathWorld]

[CL]

[ISO1087]
[SOWA1999]

OMG Unified Modeling Language (UML) v2.5

http://www.omg.org/spec/UML/2.5/

OMG Specification ptc/2013-08-20, Meta Object Facility (MOF) Core, v2.5

ODM Ontology Definition Metamodel, 2 September 2014. http://www.omg.org/spec/ODM/1.1/
W3C/TR REC-owl2-syntax:2009 OWL 2 Web Ontology Language: Structural Specication and
Functional-Style Syntax. W3C Recommendation, 27 October 2009.
http://www.w3.0rg/TR/2009/REC-owl2-syntax-20091027/

http://reference.niem.gov/

http://earth-info.nga.mil/GandG/wgs84/
http://www.iso.org/sites/JCGM/VIM/JCGM_200e_FILES/MAIN_JCGM_200¢/01_e.html
http://physics.nist.gov/cuu/pdf/sp811.pdf

http://csrc.nist.gov/publications/PubsSPs.html

http://ifomis.uni-saarland.de/bfo/
From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com

ISO Common Logic, ISO/IEC 24707:2007(E)

Terminology work — Vocabulary, 2000, ISO 1087-1

John F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational
Foundations, 1999, ISBN 0-534-94965-7

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Terms defined in other sections

e See section Error: Reference source not found for definitions of:

o

Conceptual Domain Model (CDM).

o Logical Information Model (LIM).

o Physical Data Schema (PDS).

o Model Bridging Relation (MBR).

e All terms defined in the model, clause Error: Reference source not found, are defined in SMIF.

Other Terms

e Instance: An “instance” designates something categorized by a type (including meta types). For example;
“Fido is an instance of Dog” means that Fido <has type> Dog and that Dog <categorizes> Fido. Note: Instance
does not imply (or prevent) any implementation or other restrictions such as “Factories” or “Single
Classification” as do some programming languages.

e Fact: Facts are something that someone or something asserts to be true. The class of things that can be asserted
are called “propositions” as they can be true or false. Once asserted to be true, these propositions are facts. Of
course the relevance, trust or belief in facts is open to interpretation.

Semantic Modeling for Information Federation (SMIF) 0.9 13

http://mathworld.wolfram.com/
http://ifomis.uni-saarland.de/bfo/
http://csrc.nist.gov/publications/PubsSPs.html
http://physics.nist.gov/cuu/pdf/sp811.pdf
http://www.iso.org/sites/JCGM/VIM/JCGM_200e_FILES/MAIN_JCGM_200e/01_e.html
http://earth-info.nga.mil/GandG/wgs84/
http://reference.niem.gov/
http://www.omg.org/spec/ODM/1.1/
http://www.omg.org/spec/UML/2.5/

14

Concept: Everything we describe in a SMIF model is considered a concept. A concept is anything conceived.
For something to be in a model there must be a conception of it. Concepts are inclusive of types, categories,
values and individuals.

Identity: That which makes something differentiated from something else. Identity is an abstraction that should
not be confused with identifiers, which are symbols, adopted by convention, used to identify a particular thing
having identity.

Semantic Modeling for Information Federation (SMIF) 0.9

1.5

5 SMIF Model Semantics

The following is a high-level description of the fundamental SMIF concepts.

The fundamental concepts will be described in a way that most practitioners can relate it to their familiar experiences. In
this chapter we will gradually build a semantic-conceptual architecture (an architecture that is completely independent of
any particular technology and in which there is a clear distinction between the world of the things and the world of the
representations of those things).

Note that this section amplifies the reference documentation in section 8. Section 8 should be consulted for specific
concept definitions. The model is presented using the SMIF UML profile.

5.1 The SMIF Conceptual Model Foundation

The SMIF conceptual model serves three potential purposes:
¢ It defines the SMIF language
¢ It provides foundation concepts which other models may directly use, including domain models
¢ Asareference model to which other, independently conceived, models may be mapped (where there are
concepts in common).

SMIF has been built with the expectation that by providing reference models that define common shared concepts we
can either directly reuse those concepts or map them to related concepts in different models or data structures. This is
the essence of federation.

Many of the concepts used to define the SMIF language may also be used as reference concepts for domain models.
Many of the fundamental concepts needed for the SMIF language are also found in many domain models. Examples
would be entities, identifiers, situations and values. That said, there is no requirement that these concepts be used or
referenced by SMIF domain models — the choice of what reference models to use is made by the domain architect, not
by SMIF.

SMIF, as a language for modeling, needs to interoperate with and share concepts with other languages such as UML,
OWL or XML-Schema. This is really the same problem as an application containing, for example, company
information it may need to share with other applications providing or consuming company information. The basis for
sharing information, at any level, is that there are different ways to represent information but parties must, ultimately,
share meaning (concepts) for useful communication to take place. Communications takes place when you understand
what another party has said based on some concept you share about the world, system or domain you are communicating
about. If there are no shared concepts there can be no understanding or communication.

To understand what is said you must have some way to reference a concept you share. We reference a shared concept by
using terms, or “signs”. Those signs can be textual or even gestures, like pointing at something. Natural language uses
words or phrases as these signs. But, since words can have many or fuzzy meanings SMIF also references concepts with
model based identifiers. These model based identifiers serve as signs to connect a more formalized definition of a
concept, in a conceptual reference model, with the various ways that concept may be used or expressed.

The following section identifies common concepts used by and defined within SMIF that may also be used in domain
models as well. The way concepts have been partitioned in SMIF to enable its use as a reference model across language
concepts may serve models at many levels. This approach to partitioning models may be useful in other domains as
well. Of course, some of the SMIF concepts are more focused on language design and are less useful for typical

Semantic Modeling for Information Federation (SMIF) 0.9 15

domains.

The SMIF model has already been used in this way, it is used and extended by the [ThreatRisk] conceptual model which
is used in this section to provide examples.

51.1 Thing

package Foundation Model[Thingu

AN

«documentation»

Thing Any thing or value that does or may exist in any possible w orld.
Thing is the supertype of all types and may therefore participate in
unbounded relations.

Instances of Thing are referred to as "a thing" in this model.

[IDEAS] Thing

[OWL] Thing

[ISO 1087] object: anything perceivable or conceivable
[FIBO] Thing

[Guizzardi] Thing

[FUML] Element

[SOWA1999] "T"

[OWL] rdfs:Resource

Figure 5.1: Thing

In many models it is convenient to have a sign for anything that could possible be in any world view, any data repository
or any model — the most general concept possible and therefor a “super-type” of everything else. We (and many others)
call this concept “Thing”. As a concept for anything, “thing” may be considered somewhat meaningless — but it is a
convenient concept, and one that is very common in models and data structures. More interesting concepts will all be
sub-types of “thing”.

Examples of things are “George Washington”, “The song — Rock of ages”, “Unicorns” and the number “5”. Other
examples includes a DBMS record about George Washington or a recording of the “Rock of ages”. Note that things
include “real world” things as well as made-up things and data about things we find in computers or filing cabinets
(millennials may have to look up the concept “filing cabinet™).

Semantics
Everything that is in any world, domain, model or data structure is, directly or indirectly, an instance of “Thing”.

For all X, Thing(X)

16 Semantic Modeling for Information Federation (SMIF) 0.9

5.1.2 Type

package Foundation Model [Thing has typey

Thing

+categorizes +has type Type

* Extent of Type 1.%

«documentation»

A <Type> is a categorization of any thing based on specific criteria. The specific criteria may
or may not be formalized in a model.

A <Type> <categorizes> a set of <Thing>s w hich comprises the "extent" of the type.

A <Type> is a <Context> w here the things it <categorizes> are <in the context> of the <Type>.

[IDEAS] Type: A set (or class) of Things.

[ISO 1087] general concept: concept (3.2.1) w hich corresponds to tw o or more objects
(3.1.1) w hich form a group by reason of common properties

[FIBO] Classifier: a standardized classification or delineation for something, per some scheme
for such delineation, w ithin a specified context

[FUML] Type

[CL] Type:: logical framew ork in w hich expressions in the logic are classified into syntactic or
lexical categories (types) and restricted to apply only to arguments of a fixed type
[Guarino1994] Discriminating Predicate

[OWL] Union(rdfs:Class, rdfs:Datatype)

Figure 5.2: Thing has type

A primary way we understand things is by categorizing them as types of things. The concept of “Type” is common
across most human and modeling languages. The concept of the type of a thing is also common in domain models, such
as product types, malware types, kinds of financial instruments, or kinds of fish. A type <categorizes> a set of things of
that type, all of these things <has type> of one or more types. The relationship between things and types is called the
“Extent of Type”.

Things and how they are categorized as types is one of the primary conceptual mechanisms used in SMIF and most other
languages — it is part of how we as humans understand the world. Also note that we expect things may have any number
of types, and those types could even change over time or be different in various context — such a “multiple
classification” assumption fits with the way our world works and is understood. The multiple classification assumption is
different than most “object oriented” programming languages that restrict objects to a single type that can’t change.

Remember that we said everything is a “Thing”. Well, types are things as well — we will see how this works later when
we see the full hierarchy where Type is defined.

There is a somewhat theoretical discussion about types being defined by “intension” (what we think they mean) or
“extension” (enumerating the set of things that are the extent of that type). Type, at this level, may be defined either way.
Our norm is to define types by intension based on our observation of and understanding of the world we live in.

As an aside, a notation convention we use: that the primary things we are discussing are shaded where as other related
things are not. Also note there are references, e.g. [FUML] to other standards with like concepts.

Semantic Modeling for Information Federation (SMIF) 0.9 17

Example 1

Eido

categorizes _~ Extent of Type has type
J yp Dog : Type

Figure 5.3: Fido is a dog example

In this example we are saying “Fido” is a dog. In terms of the model, there is an “Extent of Type” relationship between
“Fido” and the type “Dog” where “Dog” <categorizes> “Fido” and “Fido” <has type> dog. This relationship is one
“fact” in our model that can be read either way, from dog to Fido or Fido to dog.

We are also introducing the use of UML “Instance Diagrams” to illustrate our examples.

We would probably never just use “Thing” to categorize “Fido”, we would categorize Fido as something more specific -
“down the hierarchy” of types — here we see that Fido is a Dog and that Dog is a kind of animal. As a shortcut, we will
usually not show the “Extent of Type” relationship in examples, we will just show the types of something after the name
— as is provided for in UML instance diagrams. So the UML shorthand for writing out all the explicit relationships is:

Animal

attributes
+birth date : Time Point
+death date : Time Point

+physical sex : Sex Kind Eid o :Dog
+standing height : Length

T

Dog

Figure 5.4: UML Type and Instance Example

€,

We should understand that whenever we see an instance specification with a name followed by a colon (“:”) and a type,
it means that there is an Extent of Type relationship instance between the instance (i.e., “Fido”) and its type (i.e.,

“Dog”). There could be multiple types listed, separated by commas (e.g., “Fido : Dog, Pet”), which means that there is
an Extent of Type relationship instance between the instance (i.e., “Fido”) and each of its types (i.e., “Dog” and “Pet”).

Semantics

For all things X, where X <has type> T, X shall conform to the propositions that hold within T.
The set Extent of Type(T) = all things X, where X <has type> T

In logic, type may also be considered a function, which also implies:

For all things X, X <has type> T, T(x)

Note: The constructs for determining the propositions that hold within T as well as the semantics of relationships are
described below.

18 Semantic Modeling for Information Federation (SMIF) 0.9

51.3 Identifiable Entities and Values

package Foundation Model [Identifiable Entity and Valuey

| Thing |

[

«Disjoint With» Value

Identifiable Entity

«documentation»
A Value is an atomic. immutable piece of

«documentation»
An identifiable entity is any identifiable thing

other than values, this includes individuals,
types, axioms, situations, speech acts,
information structures, etc.

ldentifiable entities alw ays have some kind of
identity and may have identifiers. Note that
identity is an abstraction that may have
representation in models as any number of
identifiers, also know n as a "sign".

[OWL] Entity type (Implied in section [OWL] 5.8)
as an instance of rdfs:Class

information w ithout a specific lifetime or identity
independent of the value. Values include
numbers, strings and other atomic "primitive"
data. Values also include structured values,

w hich are immutable.

In UML values may be defined by the name of
an instance specification w ith a value type.

[IDEAS] Representation: A SignType w here all
the individual Signs are intended to signify the

same Thing.

[ISO11404] The identification of members of a
datatype family, subtypes of a datatype, and
the resulting datatypes of datatype generators
may require the syntactic designation of
specific values of a datatype.

[OWL] data values

Figure 5.5: Identifiable Entities and Values

We are presenting the concepts “Identifiable Entity” and “Value” together as they are best understood as complementing
each other. Identifiable entities and values are, of course, both kinds of things — but of a very different nature.
Identifiable Entities are what we mostly talk about — things we give names to, things that have some kind of independent
“identity” - everything we can see & touch are identifiable like people, rocks and dogs. Intangibles can also be
identifiable, such as purchases, threats or processes. Many, but not all, identifiable things have some kind of “lifetime”
where that may change over that lifetime yet retain their individuality.

Values, on the other hand, “just are”. One way this is explained is that values have no identity or lifetime other than the
value itself — which can never change and is the same everywhere. All numbers are values, as are quantities like “5
Meters” or “pure data” like the text string “abc”. The number “5” is the same number five everywhere (even if it has
different representations) — it makes no sense to “delete” 5! The text string “abc” is indistinguishable from the text string
“abc” in any other document or database. Values are typically used to describe characteristics of things, such as the
weight of rock “R555” is 5 kilograms. Note that values may have different representations in our models and data, but
they all represent the same underlying value.

In the SMIF foundation model we partition things as being values or identifiable entities. Something can’t be a value and
identifiable entity — these classifications are “disjoint”. This partitioning, like most of our concepts, is found in many
other languages and ontologies — both modeling languages and human languages. Domain models typically use the same
kind of partitioning and may use or map to the SMIF concepts.

Examples

Semantic Modeling for Information Federation (SMIF) 0.9 19

Fido : Dog
weight: Mass = 3.2 kg

Figure 5.6: Identifiable Entity with
Value Characteristic

Returning to Fido for a moment, Fido is clearly an “Identifiable Entity” with a lifetime. We use values, like quantities, to
define characteristics of identifiable entities — like their weight.

The above “Characteristic” for Fido, shown as the value of a UML property, states that the weight of Fido is 3.2 KG—a
nice lap dog. This is how values are typically used with identifiable entities (like dogs, people or computers). We will
see in more detail how characteristics are represented in the SMIF model later. We will also see how we can understand
how the weight of Fido may change over time (what we see above is just a “snapshot” of Fido, (perhaps when he was a

puppy)).

The rule we use is that a Characteristic always has a values as its type—. This clearly distinguishes characteristics from
relationships between identifiable entities. This is a recommended convention, but is not a SMIF constraint, to allow for
various methodologies.

5.2 Identifiers

5.2.1 Basic Identifiers

package Identifiers [Identifiersﬂ

S

a «documentation»
An identifier is any value that is used to distinguish an
entity from other entities. Note that any identifier may be
| contextualized by one or more context, including language
Identifiable Entity Value f:ontgxt.. Identifiers area “sign"- fgr an identity where)
identity is an abstraction of individuality that is the basis for
identifiers.
+identifies |1 T y Y./ .
«Sufficient» «Sufficient» - - Hzljlgg]sl]d’:ﬁgf‘ieérA Representation that identifies a Thing.
Identification +identified by «Vallf?» il [CL] Term: expression w hich denotes an individual,

- Identifier consisting of either a name or, recursively, a function term
applied to a sequence of arguments, w hich are themselves
terms

«Value»

Text Identifier

+vaiﬁg/?li|%; 4 - = - _] «documentation»

2 A code or other simple value that can be represented as
text, identifying something that may or may not be unique.
Simple identifiers may be codes, names, numbers or
compound values.

[NIEM] IdentificationType (ldentificationiD=value)

Figure 5.7: Basic Identifiers

Even in our simple examples we have been naming things — giving them “Signs”, like “Dog” and “Fido”. Most models
and data structures have ways to name things. SMIF defines the basic concept of an “Identifier” that <identifies> some
identifiable entity. There is an “Identification” relationship between an identifiable thing and what it is <identified by>.
Note that something may be identified by any number of identifiers, or none at all. Please keep in mind: The “thing”
that is identified is different from the values (signs) that identify it. A thing is also different from a data record that

20 Semantic Modeling for Information Federation (SMIF) 0.9

provides information about it. Modelers need to be clear about what the elements in their model really represent — real
world entities, data records or perhaps social conventions.

One of the design philosophies we have used in SMIF is that we should not “commit” to anything unless it is necessarily
true for the concept we are defining — but when something is necessarily true, we should state it. In this case we don’t
want to commit to an identifier being text (it could be a picture, gesture or a sound). We do want to commit to identifiers
being a kind of value as identifiers should not change. In a sub-type of Identifiers we make a stronger commitment -
“Text Identifier” which has a string value. Text identifier is a sub-type of “Identifier that makes a commitment to the
value being a string and represents the more abstract Identifier concept.

Examples

Returning to Fido again; “Fido:Dog” is really a double shortcut. We are asserting two “facts”: that Fido is a dog (which
we saw above) and that Fido has the identifier “Fido”. A full instance model would look like this:

- Identifiable Enti

categorizes _ Extent of Type has type
9 ye I Dog : Type |

identifies

. fficati

identified by
Fido : T 1d ifi
value = "Fido"

Figure 5.8: Fully expanded type and identifier instance model

Here we see that there is “some identifiable entity” that <has type> Dog and is <identified by> the text identifier “Fido”
(noting that there could be other identifiers as well). Also note that the Identifier identifies the entity and that identifier
has some value. The same value could be used in other identifiers — so at this level we are not saying anything about the
identifier’s string value “Fido” being unique.

Relating this to some DBMS, we could store a “Record” that represents Fido and has a column representing names. In
thinking about the DBMS, we want to distinguish the “real Fido” from records about Fido. The Fido element above is
intended as a sign for the real Fido — not data about Fido. Likewise, the “Dog” type is intended to represent “real dogs”,
not dog records. Of course DBMS systems are real things also, but they contain data representing Fido — so we
distinguish a model element representing the real things and real relationships between them from records (data) about
those things. This separation of concerns is the foundation of information federation. We will explore this separation of
concerns in more depth below.

There are also other types and relationships in SMIF to be able to distinguish names, like “Fido” from controlled
identifiers, like a dog-tag number - we will see more about this next.

5.2.2 Unique and Preferred Identifiers

Fido may have many names and identifiers, such as his dog tag number and the ID of the “Chip” that can be used to find
Fido if he is lost. The dog tag and chip ID are expected to be unique. His name, Fido, could be used for many dogs — it
isn’t unique but it may be the name we would prefer to use when talking about him.

Since SMIF is intended to work with data from multiple sources that will identify the same things in different ways, it is
important to be able to relate many forms of identifiers to the same entity. It is also important, where identifiers are

Semantic Modeling for Information Federation (SMIF) 0.9 21

unique, to be able to understand the scope of that uniqueness — there needs to be some authority or convention that
makes them unique. This same “multiple identity” problem exists when any application is “fusing” data from multiple
sources — so a foundation model for identifiers has broad applicability.

package Unique Identifiers [Unique Ident'rfiersﬂ

’ Identifiable Entity

B 0..1 |preferred for identifies |1
«comment» {subsets identifies} «Sufficient»
Relationship defining the
preferred identifier for an
entity. N

Prefered Identification oot
efered Identificatio Identification «documentation»

A unique identifier is an entity used to uniquely identify
something. The identified thing is referenced by w hat

[ISO 1087] preferred term: —
term (3.4.3) rated according

to the scale of the term the identifier <identifies>.

acceptabilty rating (3.4.14) ldentifiers are defined and <unique w ithin> a lexical
as the primary termfor a scope as its namespace.

given concept (3.2.1) {subsets identified by} «Sufficient» Multiple identifiers may use the same w ord or text
0..1 |has preferred identified by | * value (or other forms of values) in differing <unique
«Value» w ithin> namespaces such that the same w ord may
-~ have different meanings in different context.
Identifier An entity may have any number of identifiers.
/
«Value»
Text Identifier «Value»
attributes Unique Identifier
+value : Text = scopes identifier | *
T «Sufficient» | {subsets defines}
. «Value»
«documentation» — «Intersection» o
An <Identifier> that is represented using Unique Text Identifier Identifier in Namespace
text. e.g. a "word", "phrase" or "name". ?
el
Technical Identifier o
‘r «Sufficient» |{subsets defined in}
«documentation» unique w ithin | 1
A IRVURI ldentifier for an entity, as defined in [RFC3987]. «Value» Namespace
IRI Identifier
[FIBO] anyURI
l AN
«documentation»

A namespace is a context that provides a w ay to make identifiers unique and identify
exactly one entity. For example, the Virginia driver's license division provides unique
driver's license numbers.

Similar to [IDEAS] UniqueNamingScheme: A NamingScheme w here different Names w ill
not contain tokens of the same Representation Type.

Note: SMIF identifiers are not instances of their namespace.

[FIBO] IdentificationScheme: system for allocating identifiers to objects

[ISO 1087] terminology 1: set of designations (3.4.1) belonging to one special language
(3.1.3)

[FUML] Namespace

[CL] Vocabulary

Figure 5.9: Unique Identifiers

In figure 5.9 we have shown some additional concepts to handle uniqueness and preference.

Note the “Preferred Identification” relationship that specializes the “Identification” relationship we have already seen.
Also note the “ends” of this relationship “subset” the corresponding ends of “Identification”. Relationships, as well as
the ends of relationships, form a generalization hierarchy from more general to more specific (we don’t always show this
hierarchy in summary diagrams). The “Preferred Identification” relationship specializes Identification, so that the <has
preferred> identifier is the Identification that has the most intuitive meaning for the majority of people. Preference is
merely intended to assist in human understanding. When we show something, we may not want to see all the identifiers,
just the preferred one. Also note that an identifier preferred in one context (e.g., a domain, language, or vernacular) may

22 Semantic Modeling for Information Federation (SMIF) 0.9

not be preferred in another. Later we will see how context can be used to impact what relationships are valid in any
particular circumstance.

The other concept we are introducing is that of uniqueness. For some identification value to be unique it really needs to
be unique within something — some authority or convention that provides that uniqueness. So a “Unique Identifier” is
<unique within> some “Namespace”. A namespace could be technical, like a block of code, or social and based on an
authority like names of streets within a town, in which case the town defines the namespace. The “URL” (Universal
Resource Locator) is a well known kind of unique identifier, based on an IETF standard: 3987. Providing uniqueness in
this way is also a form of contextualization. We will explore context more below.

Semantic Modeling for Information Federation (SMIF) 0.9 23

Names and Terms

package lIdentifiers [Full Identifiersu
«Sufficient»
’ Identifiable Entity ’—""a"‘es
1.*
preferred for |0..1 identifies (1 {redefines
{subsets identifies} «Sufficient» identifies}
Namespace
Prefered Identification I
; — Identification
unique within |1
{subsets defipgd in Value
«Sufficient»
dentifier in Namespace {subsets identified by} «Sufficienty Naming
has preferred|0..1 identified by |*
«Value»
Identifier
scopes identifier
{subsets defines}
«Sufficient» |,
Valuer «Value»
Unique Identifier Text Identifier
attributes
+value : Text
~
+has name
«Value» «Value» {subsets
. «Intersection» 3 Name |igentified by}
Unique Text Identifier AN
AN
i o
| N
\ «documentation»
«Value» «Value» . |A word or set of words
Technical Identifier «Intersection» by w hich a person,
Term animal, place, or thing is
T T know n, addressed, or
| referred to. Names are
«Value» not necessarily unique.
IR Identifier «documentation» [IDEAS] Name: A
A word, phrase or name used by stakeholders to uniquely Representation that
identify entities. identifies a Thing.
[ISO 1087] term: verbal designation of a general concept in [CL] Discourse Name
a specific subject field.

Figure 5.10: Full Identifiers Package

We complete our tour of identifiers by showing the complete identifiers package that includes “Name”, “Term” and the
“Naming Relationship”. Names are identifiers intended to be meaningful to people — most often derived from natural
language vocabulary or proper nouns. By typing an identifier as a name (of the concept) we expect that people will be
able to relate the name to their intuitive understanding. Compare this with technical identifiers, which may be
meaningless symbols. Combining the idea of a name with a unique identifier we get the concept of a “Term”. A term is a
name that is unique within some namespace.

Considering these refinements of identifiers we may want to make our Fido example a bit more precise by defining
“Fido” as a name and also including a unique identifier, like a Virginia dog tag number.

24 Semantic Modeling for Information Federation (SMIF) 0.9

categorizes : Extent of Type
preferred for |
_Dog

names identifies
- Prefered Identificati _ Naming _ Identification
has name identified by
has preferred «Value» «ln;(e\:satlaucetiz .

scopes identifier

unique w ithin

Virginia Dog Tag A N

Figure 5.11: Full Identifier Example

has type | =y .
I L Entity Type

identifies

identified by

«Value»
«Intersection»

Dog : Unique Text Identifi

scopes identifier

- dentiier i

unique w ithin

Animal Model : Namﬂsnagﬂ

From this example we can see that Fido is an identifiable entity that <has type> Dog. Dogs can have any number of
identifiers and that some may be unique within specific namespaces such as the “Virginia Dog Tag Agency”. We can also
see that “Fido” is a human meaningful name that is the preferred identifier for Fido (in this context). Also note that the
Entity Type “Dog” also has an identifier unique within some other namespace — in this case “Animal Model”.

As noted above — this model for identifiers is used by the SMIF language and may also be used by or mapped to domain

reference models that deal with names and identifiers.

Semantic Modeling for Information Federation (SMIF) 0.9

25

5.3 Temporal and Actual Entities

As noted above, identifiable entities can be anything other than values. Most of the things we deal with have some kind
of lifetime — they exist in time. Some of these can be considered “actual entities, or “individuals”. The next layer in the
SMIF model defines temporal entities and actual entities.

package Temporal [Temporal and actual entities y

‘ Identifiable Entity ‘ AN

«documentation»
T A temporal is anything that has a

‘ Temporal Entity |_ timespan. Temporal things may have

«Disjoint with\ 000 L -k —] :ﬁ%‘ggral relationships w ith other temporal
\ T '

\ Note that relationships defined for [DTV]
Time Intervals may be specified for
<temporal Entity> but are not specified in

‘ Actual Entity | ‘Situation ‘ ‘Time Interval | SMIF.
N [SOWA 1999] Continuant
«documentation»

An actual entity is an identifiable, temporal and individual person, specific object, process enactment,
agreement, etc. Actual Entities do not have to be physical, e.i. may denote social constructs. Actual entities
are disjoint from types.

A more specific class of actual entity (e.g., Person) is intended to refine the classification of the individual
thing.

Individuality (or selfhood) is the state or quality of being an individual; particularly of being separate from
other individuals and possessing identity. Actual entities typically have a lifetime and some individuals may
change over that lifetime. Individuals may have parts that together help define the individual but may
change over time.

"Actual" does not imply current existence.

[ISO 1087] individual concept: concept (3.2.1) w hich corresponds to only one object

[UML] Loose correspondence w ith "InstanceSpecification". SMIF instances are direct instances of their
types, there is no "indirection" through value specification as their is in UML.

[Guizzardi] (individual concept)
[CL] Individual: one element of the universe of discourse
[DOLCE] Particular: particulars are entities w hich have no instances

[SOWA1999] Independent. Can be considered "Actuality” w hen including social constructs in [SOWA1999]
Physical.

[OWL] Individual

Figure 5.12: Temporal and Actual Entities

Temporal entity is primarily an abstract extension point in the SMIF model. It has no differentiating characteristics or
relationships. Other specifications, such as the threat/risk model, augment Temporal Entity (and most of the other
foundation concepts) with specific relationships derived from the OMG [DTV] specification. However, specifying that
Actual Entity, Situation, and Time Interval are temporal assists in more precisely defining their semantics.

Actual entities are the individual things we deal with — they are not types , categories or sets; actual things. By actual we
don’t mean necessarily physical, for example a “threat” may be consider an actual entity if it is an actual threat. A
purchase may also be considered an actual entity. Actual also does not necessitate something happening “now”, it could
be in the past, present, or possible future. Most of the “interesting” things will be subtypes of “Actual Entity” - like
person, tree or a person’s running.

Other kinds of temporal entities are situations and time intervals. Situations are discussed below, Time Interval is an
example of how SMIF concepts can be specialized in other specifications, Time Interval is defined in [ThreatRisk] and
only shown here to complete the example.

26 Semantic Modeling for Information Federation (SMIF) 0.9

Examples

package Temporal] Actual thing hierarchy U

+is before Temporal Entity +overlaps from
Temporal Order * * Overlaps in Time
+is after +overlaps to

Actual Entity

Actor Spacial Entity |Information Object |

I
| |

Social Agent Animal Item
attributes +height : Length
+birth date : Time Point +length : Length
+death date : Time Point +w idth : Length
+physical sex : Sex Kind +mass : Mass
+standing height : Length

|0rganization| | Person | | Dog | | Device |

T

| Communicating Device |

Figure ,5.13: Actual Thing Hierarchy Example

Figure 5.13 with types from [ThreatRisk] (except “Dog” -we made that up for these examples), show how a hierarchy of
domain concepts in another reference model can specialize and augment “Actual Entity” and “Temporal Entity”. By
using concepts in a reference model we get a lot for free. For example, all of these entities can have identifiers. We then
add what is missing.Here we are showing just two of the relationships defined in [ThreatRisk] for Temporal Entity:
Temporal Order and Overlaps in Time. These relationships then apply to all subtypes of Temporal Entity in any model
using or mapping to Temporal Entity.

A frequent complaint that is heard: “but I dont care about the sex of animals!”, we will never agree on the “right” set
of characteristics and relationships for anything! This is one of the fundamental difference between a conceptual
reference model and an application model; you use what you need and ignore the rest — you only agree on what you
need to agree on. Every concept in a reference model is its “own thing” that can be used or ignored in any other model.
Since a concept can be mapped to other models that may say the same or related things using different names, different
structures, or more or fewer relationships and attributes. The reference model is only there to “connect the dots™ between
concepts shared across different representations, applications or communities. If an application doesn’t need something,
it is simply not mapped. If something is missing — augment the reference or add it in another reference model. Using

Semantic Modeling for Information Federation (SMIF) 0.9 27

reference models and mappings frees applications from the tyranny of having to do it “their way” when integrating with
external system while still providing for interoperability and collaboration.

Based on such a hierarchy and relationships we can start to model interesting facts, for example:

Fido - Michelle Of -p IBM.C ion - O -
is after is before overlaps from overlaps to

Figure 5.14: Temporal Instance Example

This example shows three instances of “actual entities”: Fido, Michelle Obama and IBM Corporation. It further shows
that the lifetime of “Fido” was before “Michelle Obama” and that there is some overlap in the lifetimes of “Michelle
Obama” and “IBM Corporation”. If anything concerning temporal relationships exists in some data repository, it can be
mapped to concepts in [ThreatRisk], and/or any other reference model with similar concepts, like [FIBO]. Note that all
the facts in this example would not need to come from the same source — we may have “mapped” data from multiple
sources so as to be better able to “connect the dots” and reach new conclusions. Since these temporal relationships are
based on the OMG date-time standard [DTV], that standard could be used to reason about temporal objects.

We will delve into this in more detail later — but it is interesting to note that relationships are temporal objects as well.
So it is possible to say when a relationship holds as well as the entities it holds between. This enables SMIF models to
understand the different assumptions made about time or when something happened in various data models or
ontologies. In formal terms, this enables SMIF models to be “4D” (where time is the 4" dimension) but also allows such
time considerations to be implicit where they are not as interesting.

28 Semantic Modeling for Information Federation (SMIF) 0.9

54 Situations (Upper Level)

Another kind of temporal entity is situations. Where “actual entities” are individuals, situations are configurations of
individuals over some time-span. As configurations of individuals we can consider situations from the “outside” or the
“inside”. On the “outside” we just talk about the situation; the state of the reactor, the process of the hurricane
developing, etc.

On the inside we need to consider how to represent these configurations, this uses “context” and “propositions”. First we
will consider situations from the outside, then on the inside.

package Situations [Situationsu

AN

«documentation»
A situation is an identifiable entity composed of an
arrangement of entities and the relations betw een them
over a time interval. Situations are propositions and may
be asserted as true or false in some context. Situations
may change over time, unless otherw ise constrained.
As an identifiable entity, situations may participate in

Identifiable Entity
A

’ Temporal Entity ‘ ’Context ‘ ’Proposition ‘ relationships, thus situations are "first class" elements
? in SMIF.
T T _ - - [SBVR] "State of affairs"
| - [SOWA1999] Nexus
Actual Entity I Sliuation
o {complete, disjoint} {complete, disjoint}
Situation Kinds Event Vs State

«Intersection» «Intersection»

Actual Situation Pattern
2\

Relationship

Figure 5.15: Situations - Top Level

What are actual situations? A particular terrorist entering a particular airport. A policeman who was at a concert. A
particular rock falling, a particular cup full of water. Even relationships are actual situations — the actual situation of one
thing being related to another, in some specific way, for some period of time, such as a particular cup holding water, or a
particular person in a particular house. In the SMIF language, relationships and characteristic bindings are some of the
primary kinds of actual situations. This allows relationships to be involved in other relationships, such as when they
happened, why, where information came from, or who was involved.

Situations include both things happening (called events in this example) as well as static conditions (called states), such
as a cup sitting on a desk.’ As they are not needed for the definition of the SMIF language Event and State are not
defined directly in the SMIF model — we merely show these subtypes of Situation defined in [ThreatRisk] as examples.

Situations include all conditions and processes; actual as well as possible. Possible situations can be patterns. Patterns
provide for possible situations with some variable aspect that can then match multiple actual situations.

It is expected that situations will be augmented in reference models, [ThreatRisk] augments situations with concepts like
causation — an accident causing injury.

From the “outside”, situations look like any other entity so we will not introduce another example. We will introduce
some other concepts prior to exploring situations from the “inside” - describing the configuration of things.

> In [ThreatRisk], an instance of an Event or a State can also be an instance of either an Actual Situation or a Pattern.
That provides the distinction of an event specification vs an event occurrence, as well as the distinction of a state
specification vs a current state.

Semantic Modeling for Information Federation (SMIF) 0.9 29

5.5 Kinds of Types (Metatypes)

5.5.1 SMIF Language Metatypes

We have covered some basic kinds of things: Values, Identifiable Entities & Situations. For these fundamental kinds
there are specific “meta types” for each — subtypes of the abstract concept of a Type. These meta types provide a way to
properly define other types.

package Types|[4| Metatypes]J

Type +has type Extent of Type *categorizes | Thing ‘

1.* *

I { {redefines categorizes)

‘ Entity Type : ilda ntifiable Entity) |

dsubsets has type}

{redefines categorizes)

Situation

Situation Type | . 1. .ic fas (pel =

=UDSELE Nas

{redefines categorizes) | «Value Type»

Value Type | .-
P Value

| {subsets has type}

Figure 5.16: Metatypes

For something to be represented in SMIF, it must ultimately be an instance of “Thing”. Every “Thing” is in turn an
instance of the metatype called “Type”, or one of its specializations, which categorizes what kinds of thing it is. Every
specialization of “Type” provides increasingly-precise descriptions to which the things it categorizes must conform. We
call “Type” and its the specializations mefatypes, and we call “Thing” and its specializations types. We use this naming
scheme because SMIF can represent multiple levels of typing. For example, “Fido” is an example of a general concept
called a “Dog”. This is the “natural” level of typing, and we do not usually append the word “Type” to those. “Fido” is
an example of a “Dog”, not of a “Dog Type”. A dog type may be something like “English Sheep Dog”.

Providing a metatype allows more expressability for the kinds of types in SMIF, and provides rules for defining kinds of
types and rules about when and where each type can be used. The left side of Figure 5.16 shows the metatypes defined
in SMIF for the types called Identifiable Entity, Situation, and Value, shown on the right side. SMIF generally uses a
pattern where there is one special instance of a metatype that is the supertype of all other instances of that metatype. For
example, There is one special instance of Entity Type called “Identifiable Entity”. It would be the supertype of “Dog”,
and “Dog” would be another instance of Entity Type. For another example, the class called Value (shown on the bottom
right) is an instance of Value Type (shown on the bottom left). Every specialization of Value, such as “Mass” is also an
instance of the metatype Value Type.

Sometimes it is desirable to give these fundamental SMIF types distinctive styles and icons in UML. For this purpose,
SMIF provides namesake stereotypes for each of these fundamental types in its UML profile. For example, a
specialization of “Value” called “Mass” can have the stereotype «Value» applied to it to give that class a distinctive
color and icon on UML diagrams. Applying such a namesake stereotype to a class implies it is both an instance of a
metatype and a specialization of its namesake type, so creating the generalization arrow is unnecessary.

30 Semantic Modeling for Information Federation (SMIF) 0.9

Note that each specialization of Type further constrains the kind of thing that the metatype can <categorize>. For
example, all Value Types categorize only Values. In addition, the metatypes are a required type of the type they
categorize. For example, each instance of a Value must have at least one type that is a “Value Type”, possibly among
other types.

Each of the SMIF concrete language metatypes has a corresponding stereotype in the UML profile.

Additional metatypes are defined in SMIF and will be introduced in the appropriate sections, below.

5.5.2 Full Meta-Type Hierarchy

The following shows the complete hierarchy of metatypes.

«Sufficients
+categorizes Thing
{redefines contextualizes} *contextualizes (*
«Sufficients

Extent of Type * {redefines categorizes)

____D Extent of Context Identifiaﬁkf‘le Entity

+in contextof [1.* aSufficients aSufficients
Context +holds within Assertion +asserts | propasition

T :

1.*
+has type Type
{subsets in context of}
Situation
{redefnes categorizes) |°
+has supern.'peA'
{chain = constrained by, has specific}
I - I . [I | _ L -

Property Type Value Type Intersection Type | [Union Type | ‘ Facet Entity Type

Situation Type

‘ Role ‘ Phase

els has typa}

1.." {subsets has type)

] Association Type ‘
Characteristic Type Pattern Record Type Relationship Type

Figure 5.17: Metatypes

These additional metatypes are defined in SMIF and will be introduced in the appropriate sections, below.

5.5.3 Domain Specific Metatypes

Kinds of types can be defined for domain specific needs as well as the language elements such as we have seen above.
Domain models typically need to define types or categories of things. “Entity Type” can be specialized for this kind of
domain specific need.

Semantic Modeling for Information Federation (SMIF) 0.9 31

Example

Actual Entity ’ Social Agent ‘
A\

Entity Type
«Facet Of» -~ TFacet Of»
x {subsets has type} has product Line product line of
«Role» {redefines categorizes) 01 Product Kind 0.+ I 1 «Role»
Individual Product 9 R iiiatiniil TN «Relationship» “ | Ssupplier

Product Line of Supplier

Figure 5.18: Domain Specific Metatype Example

The above example uses some SMIF features we have not yet reviewed, the profile documentation may be consulted as
required.

Figure 5.18 defines a “Product Kind” as a subtype of “Entity Kind” - a domain specific metatype. Note that Product
Kind redefines what it categorizes to be ab “Individual Product” (being a product is a role of an actual entity). We can
now crate a relationship between a supplier and a product kind to represent that the suppler offers such a kind of product
as a product line. Using existing concepts of typing and categorization in this way alleviates the need for domain models
to “re invent” categorization mechanisms and provides for deeper semantics of what such categorization means.

32 Semantic Modeling for Information Federation (SMIF) 0.9

5.6 Context and Propositions

Note that situations are subtypes of “Context” and “Proposition”. To understand the “inside” of situations these need
some explanation. This section may be a bit of a challenge, but take time to understand it as these are essential concepts
that form the foundation of semantics in SMIF.

package Context and Propositions [Context and Propositions y

AN

«comment» Thing
An assertion relationship betw een a context and
the propositions asserted w ithin that context.

+categorizes * Extent of Type
redefines contextualizes}

The <asserts> proposition is asserted (defined +contextualizes
as "true") for all things contextualized by the A .
<holds w ithin> context. Assertion of truth is not Extent of Context

absolute, it is relative on the context. For

example, something could be asserted within a e "
context w here that entire context is asserted to Identifiable Entity

be false. AN
Negation is the complement of assertion. ~ N
~
| A\ssertion . | +in context of [1..*
o gopestion +asserts +holds w ithin Copext
* Negation *
+negates +negated w ithin
\
\ +has type

\

Association «Intersection» ! B

|

|

|

I | | | \ 1..* |{subsets in context of}
| |—‘:]

| Rule Situation \ Type

|

|

Actual Situation

N\ «documentation»
N\ A <Context> is a grouping of <contextualizes> things that are
\ related in some way.
N A <Context> also <asserts> propositions that hold for all
\ things the context <contextualizes>, thus providing the link
betw een an assertion and the set of things asserted.
B Likew ise a context <negates> propositions that are false
«documentation» pthiithsleontext;
A proposition is statement, or condition w ith a truth value (true or false) that can be Subtypes of <Context>, such as <Type> ascribe more
determined or asserted w ith some level of confidence (assessment of confidence semantics to the context as w ell as the things it
being outside of this specification). <contextualizes>.
All "facts", statements, speech acts, relationships and rules are propositions.
Propositions may be asserted to be true w ithin a context w hich they <holds w ithin>. A context provides a binding betw een a set of propositions
For a situation, the proposition is true if the situation is actual (i.e., takes place, and the things those propositions apply to.
obtains).
CL] Sort: any subset of the universe of discourse over
[SBVR] the state of affairs is posited by the proposition and if the state of affairs \[Nh?ch son‘e);uantifier is allow ed to range
w ere actual, the proposition w ould be true
[CL] Sentence: unit of logical text w hich is true or false, i.e. w hich is assigned a [ISO 1087] concept field: unstructured set of thematically
truth-value in an interpretation related concepts (3.2 1)'
[SOWA 1999] Proposition -
[SOWA 1999] Mediating

Figure 5.19: Context and Propositions

Propositions are anything to which a “truth value” can be assigned, even a probability of truth (probability is not defined
within the SMIF language but can be added by augmentation in related reference models). Being able to be assigned a
truth value does not make something true or even asserted. The assertion of a proposition is relative to a context it
<holds within>.

But, context of what? What set of things does the assertion apply to? A context <contextualizes> any number of things;
within a context the things it <contextualizes> are bound by what the context <asserts>. Context is the link between
propositions and those things the propositions apply to. The context becomes the interpretation of the proposition. Since
a thing is <in context of> any number of context that then <asserts> some set of propositions the contextualized
interpretation of any thing can be established. In summary, a context <asserts> propositions for the things it
<contextualizes>.

“Negation” is a relationship that is the inverse of “Asserts”, it asserts that something must NOT be true.

Semantic Modeling for Information Federation (SMIF) 0.9 33

Note that Situation is both a proposition (it is something that may or may not be true) and a context (it asserts some
configuration of things, defined by other propositions). Later we will see how relationships, characteristics and
ultimately “Property Bindings” bottom out this recursive loop.

Examples of context include a document (as it asserts statements within that document), a political authority such as a
state or country, a query, a process or a condition. My Coffey cup on my desk is a situation, my weight at any particular
time, the solar system, the SI system of units, the lifetime of George Washington, Etc.

Besides situations, propositions also include rules and “universal truths”, like 2 > 1. Rules can be natural (the conversion
factor of weight to mass on the surface of the earth) or asserted by authority (no radar detectors can be used in Virginia).
Note that certain conversion factors from weight to mass <holds within> the context of the surface of the earth, this is
the context of those conversions.

We previously noted the “Extent of Type” relationship between a type and the things it categorizes. Type is a special
form of Context and Extent of type is a specialized form of “Extent of Context”. Type is one way of asserting
propositions on things, things <categorized> by that type are in context of that type.

Please see section 5.8 for examples of assertions negations in a context.

34 Semantic Modeling for Information Federation (SMIF) 0.9

5.7

5.71 Property Abstraction

Many of our concepts deal with variant parts. The weight of something physical, the buyer and seller of a purchase, the

Properties, Characteristics and Relationships

cells of a DBMS record, the arguments of a function. We tend to call these properties, variables, arguments, or

association ends or fields or parts. SMIF defines an abstraction that provides for these “thing with variant” situations;

Property Types and Property Bindings. We will introduce the abstractions first and then the concrete uses of the

abstractions.

package Properties, Characteristics and Relationships [Property Abstractionu

«Sufficient»

participate in (or, are involved in) instances of another type
(including relationships). Sometimes called a variable, argument
or role.

In a conceptual model the terms associated w ith a property
kind are typically "verb phrases" defining how instances of the
involved type participate in the situation or relationship.

In a record (data structure) the property is a "slot" of a record
and may have a termw hich is a noun or verb phrase.

So that constraints of a type flow to relationships involving that
type: All propositions that hold w ithin a type referenced by <is
of type> hold w ithin the structured type referenced by
<property of>. l.e. the structured type is in the context of the
types of its properties.

In a function, a property is a function argument.

[Guizzardi] MomentUniversal

[FUML] Parameter w here ow ner is operation. Otherw ise
Property.

[UML] Property. All typed elements in SMIF are Property Types.

[CL] Operator: distinguished syntactic role played by a
specified component w ithin a functional term

[OWL] rdf:Property, ObjectUnionOf (ow l:ObjectProperty, oe;
DatatypeProperty).

the property type that
defines the semantics
of a property binding.
E.g. if the w eight of
truck-XYZ is 4500
LBS, the bound
property could be "has
w eight".

Extent of Type +categorizes | Thing
X R 1
{redefines contextualizes} +binds 1 [AY
«Sufficient»
{subsets in context of}
« |*has type Identifiable Entit
1. +property of Bound Individual Y
Type 0.1 +bound to |1
* Properties Relationship

+is of type

{chain = constrained R

by, is of type} Bound Subject

+has property | * +bound in | * +has binding | *
’ Entity Type ‘ ’ Property Type ’ ’ Property Binding
! T1 Bound Property * \
|
+bound by +has binding \
I {redefines has type} \ {redefines categorizes} \
' N —— : N
«documentation» . s «documentation»
A property type defines the way in w hich instances of a type Relationship defining A property value binding binds a particular thing (the value) to a situation

based on a defined property.

Where <binds> is an expression evaluation, the property value shall
evaluate to the evaluation of the expression.

Where <binds> is a property, the property value shall be the property
values bound to that property in <bound to> situation.

The bound to thing must conform w ith the <is of type> type of the
property. If the bound individual conforms to the "requires type" of the
property, the <is of type> of the bound thing will be asserted.

The type of the <bound to> structure must (directly or indirectly) have the
type the <bound by> properties <property of> type.

[FUML] Slot (Noting that in SMIF the binding may or may not be ow ned by
the subject, depending on the subtype of property).

[CL] Binding:

[OWL] Union(ObjectPropertyAssertion, DataPropertyAssertion,
AnnotationAssertion), RDF Triple

=Note: RDF Triples do not have identity w here as some subtypes of SMIF:
Property Type do have identity and are therefor statements.

Figure 5.20: Definition of Property Type & Property Binding

Property Type and Property Binding form a special type-instance relationship. A property binding provides <binds> a

value for a <bound by> property type within the identifiable entity it is <bound to> . This is similar to the idea of a

“triple” in [RDF]. The Property Type defines the meaning of these properties bindings for the type it is a <property of>.
As such, the property binding is an instance of its property type. Recognizing properties as types allows us to use the

same type/instance and type hierarchy tools we have seen for entities with properties.

Semantic Modeling for Information Federation (SMIF) 0.9

A Property type is a <property of> some type, corresponding to the “domain” of the property in [RDF]. Property of
constrains the types of entities that a property binding can be <bound to>. Likewise, a property <is of type> a type that a
property binding <binds> to that corresponds with the range of a property in [RDF]. Note that <is of type> is defined by
a “chain” through a rule. We will define these rules in more detail below.

The following sections show how the concrete subtypes of property and property binding are used.

5.7.2 Characteristics

Characteristics are some quality inherent in something, they describe a quality of that thing and help differentiate that
thing from other things. Other terms are “property” or “attribute”. There are characteristic types and characteristic
bindings. Typical examples would be the weight of a person or the color of a ball. Characteristics correspond to a reified
property in [RDF] but may be interpreted as a simple [RDF] triple if context or time-variant capabilities are not
required.

Characteristics should be used when the property type directly inheres in the entity type, there is no intervening
relationship or structure. Where these is “something in the middle” between two things an “Association” or
“Relationship” should be used. Relationships are described in section 5.7.3. Those familiar with RDF or OWL may be
used to defining properties in “pairs” that have an “inverse”. Where there are or could be such pairs, “Association” is the
right construct to use in SMIF. Where there is a relating class, Relationship is the correct construct.

36 Semantic Modeling for Information Federation (SMIF) 0.9

package Properties and Relationships [[%) Characterstics]/]

uSufficients
Extent of Typa +oatagonzes Thing |
{subsels contextualizes} stinds 11 -3 +eontexhulzes |°
aSutfichents wSufficients
ldentifiable Entity G
Extent of Context
{subsels in context ol weatind 1o |1
. |*has typs -
1. sproperty of Bound Individual
Type lo.1 1
. Proparties Redatinnship "
+s of type Bound Subject #in contaxt of
{chain = condrainad Context
by, Isof typa)
+hakds within | *
eSufficlents
+has property |* +bound in | * +has binding |* Asserliz
Entity Type | | Praperty Type | | Property Binding |
T Tr Bound Praperty § T aSullisients
+aggerts |
+bouind by +his hinding
{redefines has type) {redefines categorizes) Propagition
p
Situation Type Situation

L

Characteristic Type l_!:.l;llﬁtnrlﬂ.ﬂt Binding |

jsubseats bound by) {redefines has binding] v

‘ N ’ N

sdocumentabions adocumentations
A kind of characterislic of a type of thing may have, e.0. paind may have a A charscterislic of a specilic thing, e.g. the calor of Pump-
color. Cheracterstic kind is the typa of characteristc bindings which are 1234 in the =bound to= antity. A charactaristic & a *first class®
*firs! class” elemanis and may parficipate n relationships and have mata- eleman] and may parlicipals in relalionships and have
characteristics. annotations.
[IDEAS] Proparty: An IndwidualTypa whose mambers all axhibil a common [IDEAS] measuraCfindividuat A typeinstance hat asserts an
Irail or leature. Ollen the ndividuals are slales having a property (the stabe hdividual is an inslance of a Measure = e, the hdividual "has"
of being 18 degrass centigrade), w here this proparty can be a a progarty comesponding to the Measure.
CategoricalProperly {gv.) or a DispasiionalProparty [gv.).

|15 1087) characteristc: abstraction of & property of an

=0 1087] ly pe of characteristics: category of characlerislics (3.2.4) w hich object (3.1.1) or ol a
servas a8 tha crilarion of subdivision when astablshing concept systems. sst of objgcts
MNOTE Tha typa of characlerslics colour embraces characlenslics (3.2.4)
being red, bhus, grean, sic. The type of charactenstlics material ambraces [Guizzardi] quakty(x) =daf I quaktyiniversal{Ll} & (x:L

characleristics made al w aod, melal slc,

[FIBC] Sirrple Property: Simple Properlies are asserlions about things in a
class, which may ba framed in terme of soms simple typs of nformation,

[Guizzardi] gqualtyUniversal(Ll) =def infrinsicMomentUniversail) & Ik G5
() & BEs0OC(x,U)

Figure 5.21: Definition of Characteristic & Characteristic Kind

Note that “Characteristic Binding” is an “Actual Situation”. This makes Characteristic bindings — the weight of the
person or the color of the ball, subject to context and time (as a temporal entity) — so the same entity could have
different values for the same characteristic type at different times or from different sources. The expectation is that the
type of characteristics will be a value type, but to allow for diversity in approaches, this is a recommendation, not a rule.

Examples

Semantic Modeling for Information Federation (SMIF) 0.9 37

Animal

+birth date : Time Foint
+death date : Time Point
+physical sex : Sex Kind
+eurrent height : Length
+ourrent weight : Mass

«Quantity Kind»

Mass
5 Fido :Dog
|—| current weight : Mass = 3.2 KG
«Base Unit Type | | «Unit Type»
Kilogram Gram

=

Figure 5.22: Defining and Using a Characteristic

Figure 5.22 shows the definition and use of a characteristic we have seen above. Note that in the conceptual reference
model we have used “Mass” as the type of weight. This is to allow for the many different units and representations of
mass that may be used in various data sources. However an actual mass value, such as the weight of Fido, must use some
concrete unit, in this case Kilograms. This separation of the abstract “Quantity Kind” from a specific system of units is
considered best practice for conceptual reference models. SMIF machinery is then able to comprehend, integrate and
translate between various units of the same Quantity Kind. The concept “Quantity Kind” is derived from the [JCGM
200:2008] standard and is a part of the SMIF language. Specific quantity kinds and units, such as Mass and Kilogram,
are defined in reference models that use SMIF like [ThreatRisk] and [FIBO].

We can now explore the representation of these concepts in terms of the SMIF conceptual model. In this example we
will add the fact that this weight was valid during the year 2005 as defined by an ISO date.

38

Semantic Modeling for Information Federation (SMIF) 0.9

——— —— —— — — — — — — — — —— —— - e e e e e — — — —— — -

. Fido is a Dog)
. . as type
|as a subtype Dog : Entity Type

|of Animal has specific

categorizes

Fido : Identifiabl
Entity

has specialization

bound to

|

I

|

|

has generalization |
|

- Generalzation |

|

|

|
|
|
|
|

has general

________ Animal : Entity T

of Animal ~Poperties Relationship (T T T T T T T T T T T T T T T Fido has a)
| has binding .
current weightl

has property
ight : C istic T

has binding m interval of I

_'Bm.p.d_ampaﬂ;x bound in

jboynd by
|
|

is of type
_~ Property Type

Type Constraint

constrained by

>
||Value of weight
||was 3.2 kg

T T 71T Weight was valid

|
|
|
|
|
|
|
| |
| properties of type
|
|
|
|
|
|
|
| |
\ |
exists for during 2005!
11
|
|
|
|
|
|
|
|

|
| |
| |
_:Property | |
) | |
| |
|
|

_______ constrains _
‘ Mass : Quantity kind ‘ I | binds

Jefines "Kiloarams" - «Value»
[Defines "Kilograms" represented type || o

|in terms of l
| Mass concept rule |
| ‘ _ Representation Rule ‘ |
represents rule | | |
|
|
|
|

~Time Point

identifies

I | categorizes

_ Representation

«Unit Value»

l | Extent of Type

|
|
|
|
identified by |
|
|
|

Kilogram : Base Unit Type |

|

|

| represented by

| jhas type
|

Figure 5.23: Instance Model Defining Characteristic & Value for an Entity

Figure 5.23 is an example instance model showing the definition of “Animal” with a “weight” property, the definition of
“Mass” and it’s unit “Kilograms” on the left. On the right is “Fido” having type “Dog” and a property value of <weight>
being 3.3 kg during 2005.

This model uses some rules not yet defined: Generalization Constraint, Property Type Constraint and Representation
Rule — you may refer to the reference section for details on these rules. Time point and Date Time Coordinate come from
the [ThreatRisk] example model. Rules are used rather than simple relationships to allow for these constraints to be
specified in context other than the defining ones — providing for an “open world assumption”.

Focusing on the definition of a characteristic — weight, there is a Characteristic Type (named “weight”) that is a
<property of> an Animal (an entity type). This property is constrained to have a value of type “Mass” (a quantity kind).
Mass can be <represented by> “Kilogram” (a Unit Type). Dog (an entity type) is a subtype of “Animal”.

Focusing on “Fido”; Fido <has type> Dog and one characteristic is shown here as an unnamed characteristic binding,
<has binding> that is <bound by> weight and <binds> 3.2 kg as the value. This characteristic binding <exists for> (is
valid for) 2005 as defined by an ISO date. Other bindings of weight for Fido could be represented across other time
points or time intervals. We could also attach “source” and confidence information to these characteristics to aid in
evaluating its trustworthiness.

Semantic Modeling for Information Federation (SMIF) 0.9 39

5.7.3 Property Owner Abstraction

Many of the SMIF concept type defines and “own” sets of property types where the instances of these types “own” a set
of property bindings. Such “Property Owners” are composite semantic units, where all the bindings are considered
together. Examples of such property owners are associations, relationships and records. Property Owners are defined to
aid in the definition of these composite semantic units. Property owner is abstract as the true semantic of each kind of
property owner is defined in the appropriate subtype.

package Properties, Characteristics and Relationships [Property Ow nersﬂ

Type +property of

AN * 0.1 Properties Relationship
+is of type

{chain = constrained
by, is of type}

+has property
‘ Entity Type ‘ ‘ Property Type ‘

Property Binding

+bound by *

+has binding

{redefines has type} {redefines categorizes}

Owned P T jsubsets bound by} {redefines has binding}
I
™ J1 . ‘ Owned Property Binding
{subsets states}” v
redefines has .] B . g:tbesseis
property} documentation «documentation» ,
oo o An ow ned property binding defines a value for a redefines has

An ow ned property type is a property
definition defined as a composite part of an
association type - most often used in data
structures and relationships. Association
property types are the types of association
property bindings. Also know n as

particular property of a particular ow ning property binding}
type (or structure).

Similar to an OWL triple, an ow ned property
binding does not have independent identity.
Constraint: Each ow ned property binding must be

k Y vA <bound by> an ow ned property type that is
EEREHEITCIEY, ow ned by the <has type> ow ned type of the
[FIBO] Relationship Property <bound to> property ow ner.

[FUML] memberEnd (of association) Property

Ow ned property type is abstract and not intended
to directly represent semantic elements.

{redefines bound to,
{redefines property of,|1 redefines stated b
redefines stated by} <<R8uff\p\ent>> - 1 N v}
1 .
Property Owner Type fj«Restriction» ‘ Property Owner
‘ {redefines has type} {redefines categorizes} ‘
| «
«documentation» «documentation»
A type of Property Ow ner (See Property Property Ow ner is an abstract element for anything that may ow n a set of property
Ow ner for details) w hich defines a set of bindings. This element is abstract and not intended to directly represent domain
"Ow ned Property Types" w hich are the concepts. Subtypes of property ow ner provide semantic interpretation.

types of ow ned property bindings.
Property ow ner is abstract and not
intended to directly represent semantic
elements.

Property owners own owned property bindings, so a property owner is just a set of such bindings without further
semantic interpretation. There is a corresponding type for each as Property Owner Type and Owned Property Type.

Property owners are used in associations and relationships as is seen below.

5.7.4 Associations and Relationships

We will introduce associations and relationships together, as they are are similar in that they “relate” things. The
difference is one of independence and lifetime. Relationships are “first class situations”, they have their own timeframe
and identity. For example, a marriage can be such a relationship. Associations are similar to relationships but their
lifetime is co-existent with the lifetimes of the related entities. In many cases they are definitional for one or both ends of
the association. This is also known as an “Intrinsic Relation” [Guizzardi].

40 Semantic Modeling for Information Federation (SMIF) 0.9

package Properties, Characteristics and Relationships [Associationsﬂ

Extent of Type

+has type

{subsets in context of}

_% Type

+property of
0

o

+has property |*

e Properties Relationship
+is of type

{chain = constrained
by, is of type}

«Sufficient»
+categorizes { Thing ‘
* " Ay
{redefines contextualizes} ﬂ?lnds !
«Sufficient»

’ Identifiable Entity

’ Entity Type ‘ ’ Property Type
+bound by |1
{redefines has type}
Owned Property Type

{subsets states|”
redefines has
property}

{redefines property of,| 1
redefines stated by}

’ Property Owner Type

1.
{subsets has
type}

{subsets bound by}

«Sufficient»
«Restriction» 1-

{redefines has type}

+bound to |1
Bound Individual
+negated within Context
Bound Subject *
+holds w ithin | *
Negation

Assertion

+bound in |* +has binding | * * Hnegates +asserts |
Property Binding ‘ ’ Proposition
+has binding |* A
{redefines categorizes}
* ’ Owned Property Binding

{redefines has binding} {subsets states

redefines has binding}

{redefines bound to, |1
redefines stated b

{redefines categorizes}

{redefines
categorizes}

Property Owner

Association

Figure 5.24: Associations

Associations are “Propositions” in that they can be true or false and asserted or negated within a context. Each
association has a set of “Owned Property Bindings” that define the related things. Associations are defined with
association types that define a set of owned property types, the ends of the association.

Example

Semantic Modeling for Information Federation (SMIF) 0.9

41

Thing |

Identifiable Entity @) «Value Type»
Value
+identifies | 1 T
wSufficients wSufficients
Identification +identified by | «V/alue Type»
. Identifier
. - O . o «Value Type»
~Person identifies _Identification identified b
| | "o
Identifier

Figure 5.25: Association Example

We have already seem multiple associations, in figure 5.25 we repeat the definition of the “Identification” association
and an instance of it showing “Frank” <identifies> a person. Identification is inherent in an identifier, it can’t exist
without it and what an identifier identifies does not change (else it would be another identifier). This Identification
association is “Existentially dependent” on both entities and it also serves to define those entities. The above is shown in
terms of the SMIF UML profile, as instances of the SMIF conceptual model it would be:

-— e e e e e e e— - e - - - = — —— = = — = = — — — -—

property of | ldentification : |property of
A AT

| |
| |
|
| . Properties Relationshi Type _ Properties Relationship I
| has type I
| has property has property |
| T iifias identified by ; |
: Owned Owned
N Property Type Property Type |
is of type bound by bound by l is of type
 Beoon Dot T —
—_— e e e e e e e e e e e | e — — — has type
has type (\
| | Extent of Type |
_ Bound Property _ Bound Property
| |
| categorizes
bound to P bound to |
_Association
_ Extent of Type | | ~Extent of Type
| - Bound Sublest - Bound Subject |
| . - I
| has binding | has binding has binding has binding
~Owned ~Owned I
| Property Property |
| Binding Binding |
. | bound in bound in categorizes
categorizes - binds I =
Identifiable Entity nds
~ Bound Individual
| I
Instance of Identification Association for "Frank"
- — — — — — Dslanceol’denufication issociationtor rrank _ __ _ _ _ _ J

Figure 5.26: SMIF model instances for an association

42 Semantic Modeling for Information Federation (SMIF) 0.9

In 5.26 we see the SMIF model instances corresponding to the UML profile view in figure 5.25. The “Identification”
“Association Type” has two association property types: “identifies” and “identified by” that each have a corresponding
type: “Entity Type” and “Identifier”.

This association type is the type of an association (that has no name) with two bindings to an instance of person and an
instance of Identifier, “Frank™. This association hold for the lifetime of both entities.

5.7.5 Relationships

Relationships, and the corresponding Relationship Type, are part of the foundation of the SMIF language. In fact, SMIF
conceptual reference models could be thought of as “relationship oriented” rather than “object oriented”. This is because
much of the semantics of a domain is captured in how things relate.

Relationships in SMIF are considered “first class” entities, or as described in [Guizzardi2015] “Full-Fledged Endurants”
where “a relationship is the particular way a relation holds for a particular set of relata”. This means they have their own
meaning, identity and life-cycle. Relationships augment situations in that they are first-class actual situations.
Relationship types can specialize other relationship types. Relationships can have characteristics and participate in other
relationships — of particular importance are other relationships that define when a subject relationship is valid or when it
is not. While a relationships as a “two ended line” is the most common, relationships can have any number of “ends”
that relate involved things. This is called an “n-ary” relationship in the literature.

While relationship instances may become “true or false” in certain time-frames or context, each relationship instance is
considered atomic and invariant. That is; the “ends” of the relationship instance never change. For example, if we have
the relationship “John is located in Virginia”, we could say this is true from 2012-2016 but we would never change
“John” or “Virginia” for that relationship instance. If we wanted to say “John is located in Mexico”, that would be
another relationship instance with its own life-cycle, perhaps in 2017. This allows us to “track” John over time or to just
consider where John is right now. It also allows us to attach metadata to each relationship instance, for example, who
said that John is located in Mexico in 2017? By recognizing relationships as first-class situations and temporal entities,
SMIF provides a way to account for time and change over time — this is known as “4D” in semantic literature, where the
4™ dimension is time. Relationships can also be used as more of a “snapshot in time” where 4D is not of concern.
Relationships with no time constraints or time-dependent context are considered to be true indefinitely.

The “ends” of a relationship are represented as properties. Each property defines a related thing, also known as the “Qua
Entity” [Guizzardi]. The naming convention we use in SMIF is that these ends are named as verb phrases that are the
view of an end from the other ends as we will see in the examples.

Semantic Modeling for Information Federation (SMIF) 0.9 43

package Relationships [Relationshipsy

Context +holds w ithin Assertion

<t

. See Also
«Equivalent Property» ‘r

+has supertype. +property of Properties Relationship

. .

{chain = constrained Properties Associations
by, has specific} +is of type [«Equivalent Property» .
* |{chain = constrained

by, is of type} Situations

| +has property |*

— \—(% Property Type |rbound by *has binding Property Binding
11 Bound Property *
Temporal Entity
JAN

Entity Type

Proposition M~
JAN

{subsets has type} N
Situation Type ’ Situation ‘
1. {redefines categorizes} T
Property Owner Type «Intersection» Property Owner

Actual Situation

B
{redefines
categorizes}

1.7
{redefines
has type}

1 1

(redefines {redefines
property of, bound to,
redefines redefines
stated by} stated by}
{subsets has type}
Relationship Type Relationship
1. {redefines categorizes}
{subsets {subsets
states, states,
redefines has redefines has
property} binding}
* «Sufficient» *
«Restriction» 1 .
Owned Property Type Owned Property Binding
subsets bound by} {redefines has binding}

Figure 5.27: Defining Relationships

Figure 5.27 shows the SMIF conceptual model defining relationships, building on concepts we have already seen such
as situations, associations and properties.

Relationship types build on “association” and “owned properties” as the ends of relationships. In the Characteristics
section we saw that each characteristic is an independent situation. On the other hand, owned properties are always “in”
something else — in this case a relationship. There is no way to say that a relationship exists in time “A” where as one of
its ends exists in time “B” - relationships are an atomic unit. This is why the “Owned Property Binding” is shown as
being “owned” by the “association”.

A relationship is a special kind of situation involving the related elements, each identified by a binding owned by the
relationship. Likewise the Relationship Type is a kind of situation type that has a set of owned property types (it is legal
so share owned property types between relationship types).

As we noted above, since relationships are situations you can define other relationships that involve relationships. For
example if we define the relationship that Sue possesses Key-card-A8988 which enables her to enter building 5. This
“possession relationship” could be altered by a theft which could have stolen that key card.

Example 1

44 Semantic Modeling for Information Federation (SMIF) 0.9

Actor

has permission

may be performed by

Permission

Sue :Person, |r1'a',r be performed by

to perform

has permission to perform| Enter Buijlding 5

Activity

= |
Actor

The “Permission” relationship example is defined between an actor and an activity in [ThreatRisk]. We also see an

" Activi

instance of this relationship in the UML profile as “Sue” having permission to “Enter building 5”. Next we will look at
the relationship definition and instances in terms of the SMIF conceptual model.

property of | permission : Relationship Type

- Properties Relationshi

maybe performed by ;
Structured Property Type

|
|
I
|
I) has property
I
|
I
|

bound by

has supertype = Ability

"
has type

bound by

property of

has property

Definition of Permission Relationship

categorizas

wEh‘[iTy_n_ (e] MS

Entity
|

B I ! I

|
|
|
I bound in
| S Structure
|
|
|

ca

tegorizes
Permission):
Relationship

bound to

has binding

has binding

bound to

has bkinding

has binding

Sue's Permission to enter building 5

Figure 5.28: Defining and Using a Relationship

Assuming that “Actor” and “Activity” are already defined, we define a new “Relationship Type” with a name of

2, ¢

bound in

_ Structure
Broperty
P

«Entitys

“Permission”. Permission has two “Owned Property Types”: “may be performed by” an entity that <is of type> “Actor”

Semantic Modeling for Information Federation (SMIF) 0.9

45

and “has permission to perform” entity that <is of type> “Activity”. (Note that we are using the “shortcut” property
chain “<is of type>, which implies a property type constraint).

To represent an instance of “Permission”, giving “Sue” permission to enter building 5 we create a relationship which is
an instance of “Permission” which represents (is a sign for) Sue’s permission. - the actual Sue having the actual business
permission to enter the actual building; we say this to emphasize that we are modeling the “real world”, not data about it.
Sues’ permission relationship has two “Owned Property Bindings”: One that binds Sue to “may be performed by” and
the other that binds “Enter Building 5” to “has permission to perform”. Of course both Sue and “Enter building 5 could
be bound in other relationships.

Example 2

Building on the example above, we would like to represent the idea of a “Credential”. A credential can attest to a
permission or other kind of ability.

Actor
can be utiized by
|«Relationship»

- T - Ability
attests to |*

* | has abilty to utilize

aRoles

Resource «Relationships |
[~ |Attest to Ability |

| Actual Entity |

L |

T has credential | *
Credential
Sue :Person, |may be performed by ~ Permission has permission to perform | Enter Building 5
Controlling + Activity
A attests to

has credential

Credential

Figure 5.29: Relationship Involving Relationships

46 Semantic Modeling for Information Federation (SMIF) 0.9

Permission is a subtype of “Ability” (we know it it not in the diagram, trust us). An ability is a relationship between an
actor and some resource they can use — in the case above the ability was “Permission” to do something and the resource
was an activity. Note that there is a relationship type “Attest to Ability” between a credential and such an ability. A
credential <attests to> some ability. This shows how relationships can be “first class” elements and the subject of other
relationships — the “Permission” relationship is one end of the “”’Attests to Ability” relationship.

At the bottom of figure 5.29 we see an instance of the relationship that is at the top of figure 5.29, where “Sue” <has
permission to perform> “Enter Building 5”. We also see that “Key-card-A8988” <attests to> this ability in a “Attest to
Ability” relationship. Note that the notation used here, a UML instance diagrams, is not what we would show to
stakeholders — they would most likely see a custom user interface.

We will now look at the above in terms of SMIF model instances instead of the UML profile.

Ability : Relationship T
is of type has supertypa
P T e -
I Definition of Attest to Ability |
| - Properties Relationship property of | iBelationship (Property of |
| has type | Permission : Belationship Type
| has property has propesty |
I Jential: Jbound by . I has type
Structured —————— Structured 1
| Broperty Type Property Type
| bound by |
| is of type |
| Cradontial: '
,_\._____. p— ____.______________I —
| has type - Bound Property ~Extent of Typa 5 B !
I |
| ~Extentof Type
| has binding has binding |
| wound in ~Structiire ~ Structire |
Binding Binding |
| has binding has binding| bound in |
|
| - Bound Individuzl und ta |
|
| categorizes | binds categorzes . |
| - Bound Individua
: #Enfitys [] - Bound Subjec Sue's bound to |
Key-card- Credential .
ABIRS : Actual Entity ~Bound Subject |
| identifiable |
| Entity . .
Mo __ & Sue's Credential _ _ _ _ _ _ _ _ _ | _ ___ '
binds:
(Sue's calagorizes
Permission): |
Ro lati y

Figure 5.30: Relationship Involving Relationships — instance model

In a pattern very much like the definition and use of “Permission” we see the definition and use of “Attest to Ability”.
The interesting addition is that the “<attests to> end of “Attest to Ability” has a type of “Ability”, a relationship type that
is a supertype of “Permission”. This allows “Sue’s Credential”, to <attest to> “Sue’s Permission to enter building 5.

The result of the above is that we have properly represented that sue has a permission as well as a credential for that
permission. Consider the additional types and relations that could build on this foundation:

* We could have a “Possession” relationship, representing that Sue is in possession of her credential.

e We could represent an incident where the credential is stolen and possession is transferred to a terrorist, thus
providing access to an attacker.

Semantic Modeling for Information Federation (SMIF) 0.9 47

* We could represent and evaluate various threat scenarios relating to such a stolen credential.

* We could model mediating actions and their result.

5.8 Composition and Sequencing of Actual Situations

In section 5.4 we discussed situations from the “outside”, treating a situation like any other identifiable entity. Situations
are a composition of other entities and relationships — the elements that make up a situation are “asserted” by the
situation.

package Situations [Actual Situationsu

+negated w ithin Negation
Context [,
+holds w ithin Assertion
+asserts |*

+negates

AN

T «documentation»

A situation is an identifiable entity composed of an
arrangement of entities and the relations betw een them
over a time interval. Situations are propositions and may

Actual Entity ’ Situation '_ be asserted as true or false in some context. Situations
—|may change over time, unless otherw ise constrained.
= As an identifiable entity, situations may participate in
relationships, thus situations are "first class" elements

Situation Kinds

in SMIF.
«Intersection» «Intersection» [SBVR] "State of affairs"
Actual Situation Pattern [SOWA 1999] Nexus

lﬁ ~

Relationship

«documentation»
An actual situation is an individual situation that actually exists, happened in the
past or may exist in some possible w orld, not a template or process definition.
Such situations must exist for a time interval, how ever there are no constraints
on such a time interval - from an instant to the life of the universe.

DTV: Occurrence: state of affairs that is a happening in the universe of
discourse

Figure 5.31: Actual Situations

Subtypes of “Situation” are “Actual Situation” or a “Pattern”. This section deals with actual situation composition, we
will look at patterns in a later section. Actual situations are complete, where as patterns may have variables.

As shown in figure 5.31 we see that a situation and an actual situation is a Context that <asserts> or <negates>
Propositions. Propositions can be rules, relationships, characteristics, patterns or other situations. Each of these
asserted/negated propositions becomes an element of (something true/false within) the subject situation context.

We have already seen some examples of atomic situations; relationships and characteristics. Each relationship and
characteristic, such as those seen in section 5.7, is an atomic situation. A relationship is a configuration of the set of
things in bound together immutably for a time period. If we had a set of such relationships, all true “together” it would
make up an actual situation. Since situations are temporal entities, they exist for a certain time interval but the elements
within them may change.

Building on the example of Sue and her “key card”, we could have the situation that Sue has a permission, the key card
attests to that permission and that she is in possession of it. We are using some additional types and relationships defined
in [ThreatRisk] and are assuming these are sufficiently intuitive to be shown without definition. The [ThreatRisk]
specification is available for review.

48 Semantic Modeling for Information Federation (SMIF) 0.9

Controlling
Actor

Sue : Person,

is possessed by

may be performed by ~Permission |asserts has permission to perform| Enter Building 5
attests to| Activity
- Attest to Ability . Assertion
asserts
has credential
possesses Credential
asserts holds within holds within
. Lo «Intersection»
~Asserion holds within Sue has her card : Actual Situation
interval of
- Enfity Exists f
exists for
4an 12005: |start of _ Start Time starts at :
Tine P = |

Figure 5.32: Initial Situation Example

Figure 5.32 shows the addition of the “Possession” relationship — Sue <possesses> Key-card-A8988. We also introduce

the “Sue has her card” actual situation which started “Jan 1 2005. This situation <asserts> the possession, the
permission and the attest to ability relationships. These relationships were all “true” starting on this date, based on this

context of the “sue has her card” situation. Note that it doesn’t say anything else about these relationships, this does not
imply that any of these situations did or did not exist at any other time — that could be said, but it is not here. Lack of an
assertion does not imply the opposite — this is the “open world assumption” in action.

But what if Sue’s card got stolen?

Semantic Modeling for Information Federation (SMIF) 0.9

49

Sue :Person, |may be performed by ~Permission | asserts has permission to perform| Enter Building 5
. m DU
Actor attests to| LActivity

is possessed by

~Atftestto Abilty {ZoSThe _~Assertion

has credential

_ Possession
possesses Lredential
negates
possesses
. asserts
_ Possession

is possessed by

Alexander Mundy :
Person, Controlling
Actor, Threat Actor
holds withinhoteg within holds within
. : negated within «Intersection»
~Negation Sue's card was stolen : Actual Situation
Undesirable Gonditi
interval of
- Enfity Exists f
exists for

Eeb 3rd 2008 Time Point [tartof —Start Time starts at| Time Interval
|

Figure 5.33: Example Situation After Theft

In an attack (not shown), Sue’s card was stolen by “Alexander Mundy®”, so now we have a new situation - “Sue’s card

was stolen”. There is a new “Possession” relationship — Alexander Mundy <possesses> “Key-card-A8988”. In this new
situation starting on Feb 3™ 2008, it is asserted that Alexander possesses the card and that the card still attests to the
permission of Sue to enter building 5. This is also classified as an “Undesirable Situation” (A classification from
[ThreatRisk]). Note that in this situation Sue’s possession of “Key-card-A8988” is “negated”; that it is stated to not
being true. We are saying Alexander has it and Sue doesn’t.

Assuming Sue reported the theft there should be some mediation action taken!

8Tt takes a thief” Television Series

50 Semantic Modeling for Information Federation (SMIF) 0.9

Sue : Person, |may be performed by asserts J Permission has permission to perform| Enter Building 5
Actor attests to attests to
is possessed by
asserts negates
has credential has credential
_ Possession possesses | Key-card-B8988 M
asserts :Credential _ Assertion
] possesses
_ Assertion]
_Assertion - Negation : Possession
holds within Is possessed by
holds within Alexander Mundy :
. Person, Controlling
«Intersection» Actor, Threat Actor
Sue assigned new card: |negated within
A L Situati
holds within
interval of
- Enfity Exists
exists for
~Time Interval |start of _ Start Time starts at | Fep 5th 2008 :
Time Poi

Figure 5.34: Example Situation After Mediation

The situation after a mediation (mediation activity not shown) is that card “Key-card-A8988” was revoked and a new
card, “Key-card-B8988” was assigned to Sue. The post-mediation situation called “Sue assigned new card” shows that
Sue’s permission is still in tact (the permission at a business level never changed), that Sue has the new card. But, the
“attest to ability” relationship of “Key-card-A8988” has been negated and “Key-card-B8988” asserted (how this

happens it outside of this model). In the final situation we don’t know if Alexander still has the old card or not — but we

don’t care. Building 5 is safe!

What this has shown is a sequence of situations, happening in time, relating things that exist across all these situations.

Semantic Modeling for Information Federation (SMIF) 0.9

51

_ Assertion asserts -
«Intersection»
Sue I 1A Lsi .
holds w ithin .
holds within | ¢ isafteriasserts - Temporal Qrder
«Intersection» is before
Sue's pgrm|§§|g. n holds w ithin _ Assertion asserts dntersection»
Sue's card was stolen : Actual Situation,
holds within| holds within| | holds within Undesirable Condition
~Asserdion is after asserts _ Temporal Order
) is before
_ Assertion asserts -
«Intersection»

3 . ! 1A LSi .

2005-2010 :

Time Interval

exists for
_ Assertion
asserts _._Enllly_EXJﬁts_f_QleQLV_al
Controlling may be performed by interval of has permission to perform - Activity
Actor .
_ Permission

Figure 5.35: Sequence of Situations Example

In that each situation is its “own thing” happening in its own timeframe they can all “co-exist” in the same repository
and be analyzed together. We can have an overall situation “Sue’s Permission Sequence” that asserts them all and
defines some ordering. We could also add additional relationships, perhaps to say Sue's “business permission” is valid in
2005-2010. Note that Sue, the permission, the key cards and their relationships are not “created and deleted”, but retain
their lifetimes through these various situations. What changes is the situations they are asserted in and the termination
dates of the time intervals. This “4D” capability allows the federation of information across different timeframes such
that we can analyze actual and possible cause, effect, correlation and mediation.

“Actual Situations” are the glue that binds together these timeframes and related entities that exist across time. Also note
that we are showing each assertion individually, but it is possible to bunch a set of elements together under a package

and assert them together.

52

Semantic Modeling for Information Federation (SMIF) 0.9

5.9 Patterns

Patterns are similar to actual situations in that they are configurations of entities and the relationships between them,
however patterns represent a set of real or possible actual situations. Patterns have variables that are are placeholders for
elements in actual patterns.

For example; Sue having possession of a credential for entering building 5 is “actual”. People possessing a credential to
enter some building is a pattern. The pattern <classifies> actual situations that meet the constraints of the pattern.

While patterns may contain variables, they may also include actual entities. For example, we could describe the pattern
of people that have permission to enter building 5 but do not have the credential in their possession — a pattern to worry
about. “building 5” is an actual entity where as the person and their credential are variables.

Patterns may be used for information mapping, to express rules, to query or to define projections of viewpoints for
specific kinds of stakeholders.

package Patterns [F‘atternsﬂ

Context +holds within Assertion +asserts Proposition
+negated w ithin Negation +negates
* * x
«Sufficient»
+subject type
Type " =
{redefines holds w ithin} 1 Patterns, like all propositions can
assert other propositions (including
relationships) as true within that
. N .
«Equivalent Property» pattern. These assertions may
{chain = constrained by, isof type}| , reft_erence pattern properties as
variables.
+is of type 01| *property of Entity Type
+has property

Property Type

Properties Relationship Situation Type

{subsets has type} N ation Tatches
« . 1
1. {redefines categorizes}

‘Property Owner ‘ ‘Le)a'cal Scope ‘
‘ Owned Property Type ‘ «Sufficient
{redefines property of, redefines stated by} T T |

*has ow ning pattern «Intersection»
Conditional Pattern Variables 1 Pattern
AN

+ow ns variable —
. | {subsets states, redefines has property} +satisfies

Situation Kinds

N

«Intersection»
Actual Situation

Pattern Variable {redefines bound by}

+qualification : Variable Qualification [1]
+explicit : Boolean

+subsets Variable Subsets
1 Pattern Match
Complired by redefines
attributes istated by)
+computation : Expression Node [0..1]

+qualified +has
Proposition Variable 0W1'm‘" Proposition = su‘t;sef - * Ksubsets states}
B EBOEEILI * | variable Binding
1 {redefines has

Expression Variable | +qualifies

binding}
Proposition V
{subsets owns Owned Property Binding

————) variable}
Type Pattern Variable
{redefines has «enumeration»

| ow ning pattern} Variable Qualification
i Select
Part Variable Focus Variable s ©f Type Optional
+is boundary part : Boolean [0..1] Default

+asserts | 0..*

pattern ﬁzse{t
ate
{subsets asserts} Exgctly One
Subject of Pattern Relationship Xrlmlere Exists

Figure 5.36: Full Pattern Model

Semantic Modeling for Information Federation (SMIF) 0.9 53

For context, figure 5.36 presents the full pattern model without further comment. We will “build up” these concepts one
step at a time, below.

5.9.1 Patterns — top level

package Patterns| Pattern Top Levelu

Context +holds w ithin Assertion +asserts Proposition
+negated w ithin Negation +negates
T * * A
Type
Entity Type

*

T {subsets has type} . -
Situation Type Situation

L {redefines categorizes}

Property Owner Lexical Scope TSituation Kinds
«Intersection» «Intersection»
Pattern Actual Situation

+has ow ning pattern

+ow ns variable | *

Pattern Variable

Figure 5.37: Patterns - Top Level Model

Figure 5.37 illustrates how patterns fit into both types and actual situations. The “internals” of complex patterns using
“Pattern Variables” will be discussed below.

Patterns are a situations in that they describe how other entities are related and combined, just like an “actual situation”.
Patterns are a “Situation Type” in that they <categorize> other situations that could be other patterns or actual situations.
Patterns are a “Lexical Scope” in that they “own” specific assertions and variables that describe the pattern. Patterns are
property holders in that they may have pattern variables.

5.9.2 Repeated Patterns

At the simplest level, patterns can be just like actual situations except that they may happen over and over. For example,
if there is the situation of “My coffee cup is on my desk”, that situation may occur almost every morning, except
Sundays — making it a pattern. Each “actual situation” that the pattern <categorizes> has a specific time — the cup was on
my desk: Monday, the cup was on my desk, Tuesday, Etc. For such simple patterns, they look just like “actual situations”
with some detail missing — in this case the timeframe. Such a “repeated pattern” is the simplest kind of pattern — it has
no variables other than the time the pattern instance occurs.

54 Semantic Modeling for Information Federation (SMIF) 0.9

(Definition of Pattern

_ Permission may be performed by | SueiPerson, | _ Possession
Controlling is possessed by
asserts Actor asserts

I
I
I
I
I
I has permission to perform
I
I
I
I
I
I

Enter Building 5 GAsserlon ~Assertion possesses
. Activit Key-card-B8988
:Credential
holds w ithin holds w ithin
«Intersection»
\ L ____ KeyCad | _
__________ Pattern : e
r Pattern \l
I ' ! has type
[I | _ Extent of Type I
| |
I categorizes | Icategorizes |
I «Intersection» I «Intersection»
| Has card on Jan 12009 : I | Has Card on Jan 3rd I
> " | . . . |
| e Situation | il Siluation
I interval of | I interval of |
| o | I [
- Entity Exists for Interva R .
| b ~Eliv Bl farbienal
| b |
| exists for I | exists for I
I /112009 : Time (N 1/3/2009 : Time |
| St I ot l
| o l
< — _ _nstance:1ofpattern _ _ , _ _ _Instance2ofpattem_ _ _

Figure 5.38: Repeated Pattern Example

In figure 5.38 we revisit Sue and her key card. We define a pattern “Key Card Possession” that asserts two things: Sue
has permission to enter building 5 and Sue has possession of Key-card B§988. But, what if Sue had her card on Jan-1,
lost it on Jan-2 and found it again on Jan-3rd? We have two “repetitions” of the same pattern “Key Card Possession
Pattern”, each at a different time. Note we don’t know what happened on the 2™ or the 4™ — those would be additional
assertions. Remember, lack of an assertion does not make it false (open world assumption)

In the top box “Definition of Pattern” we see that defining this simple pattern is not that different than defining an
“actual situation”, but there are no time parameters. We are declaring it as a “Pattern”.

In each of the lower boxes we see an “instance” of this pattern: e.g. “Has card on Jan 1 2009” <has type> “Key Card
Possession Pattern”. This actual situation exits for the time period “1/1/2009”, since it is an instance of “Key Card
Possession Pattern” we know that all assertions made for the pattern (the possession and permission) hold for what the
pattern <categorizes> We know this because a type, like all context, applies its assertions to each thing it
<contextualizes>. So the pattern assertions are carried forward to all its instances; both “Has card on Jan 1 2009 and
“Has card on Jan 3rd 2009” assert both the permission and the possession. In short; everything said about the pattern
applies to all the pattern instances.

Semantic Modeling for Information Federation (SMIF) 0.9

The pattern instances will be valid, <exist for> each of their indicated time periods.

5.9.3 Pattern Variables and Bindings

Pattern variables provide for variability of pattern contents. For each thing that may change (including relationships!)
there is a pattern property.

package Pattern Variables [Pattern Variablesu

Type G
«Equivalent Property»

{chain = constrained by, is of type}| ,

+is of type 01| *property of Entity Type

ﬂhas property
Property " Situation Type [[subsets has type} . [situation |imatches
1.7 {redefines categorizes} !

ty Type
Situation Kinds

Properties Relationship

’Praperty Owner ‘ ’Le)a'cal Scope

L1

«Intersection»

Owned Property Type «Sufficient»

{redefines property of, redefines stated by}
+has ow ning pattern

Pattern Variables 1 Pattern
+ow ns variable +satisfies |1
. {subsets states, redefines has property} «Intersection»
Pattern Variable Pattern Matches Actual Situation
+qualification : Variable Qualification [1] ! T
+explicit : Boolean redefines o .
(bound by} +satisfied by | pattern Match [
AN Y 7 * +matched by
«enumeration»
Variable Qualification 1 {redefines
Select stated by}
Optional
+qualified Default

.) within Qualified Proposition Assert
Proposition Variable o Negate
- Exactly One subsets states}
There Exists * Variable Bindi
All {redefines has ariable Binding

+qualifies |1 binding}
Proposition

v
’0wned Property Binding ‘

Figure 5.39: Pattern Variables

Figure 5.39 shows the definition of “Pattern Variable”, the “Variable Qualification” enumeration and “Qualified
“Proposition” to help define patterns and “Pattern Match” using “Variable Binding” to match patterns to situations. We
will initial focus on “Pattern Variable.

Pattern variables provide a placeholder for the “real” elements in actual situations. Pattern variables specialize “Owned
“Property Type” so they have a type, <is of type> and <has owning pattern> of the pattern in which the variable is
defined. Pattern variables have a “quantification” that defines the semantics of the variable within the context of the
pattern. We will see how these are used in the examples.

The intent of patterns is to ultimately classify actual situations; either by finding them or asserting them. Elements within
the actual situations are bound to pattern variables using variable bindings. This proves that a particular pattern
<classifies> an actual situation. Said the other way, the pattern is a type of the actual situation it matches based on the
variable bindings in a pattern match.

Qualified Proposition provides the ability to reference some proposition, such as a Relationship, as a variable within a
pattern. These propositions typically involve other pattern variables. For example, a relationship between a Coffey cup

56 Semantic Modeling for Information Federation (SMIF) 0.9

and a table is sits on is <qualified within> a qualified proposition as part of a pattern. When there is an actual Coffey cup
on an actual table the Coffey cup, the table and the relation between them are abound to their respective variables.

“Pattern Match” and “Variable Binding” are used to connect a pattern and its variables with actual situations instances
and the elements that constitute them as will be seen in section 5.9.6.

594 Example pattern definition in UML Profile

The SMIF UML profile provides for the expression of patterns using “structured classifiers”. Each pattern variable is
either a property or connector owned by a structured classifier. Connectors are used to define “Qualified Propositions”
based on associations.

«Pattern»
General Key-Card Possession Pattern

«Pattern Variable»
may be performed by «Select» {qualification = Optional}
w Some Actor : Controlling Actor is possessed by Some Possession : Possession

«Select»
Some Permission : Permission

attests to possesses
N A ” «Select» has credential «Select»
a3 pe;m:ss"’” o perfom Some Attest to Ability : Attest to Abilty SomelKeyjcardl: Credentlal
«Select»

Some Activity : Activity

Figure 5.40: Patterns in UML Profile Example

Keeping with our example based on Sue and her key-card, figure 5.40 defines the “General Key-Card Possession
Pattern”. This pattern defines “variables” for the person having permission, the activity they have permission for and the
key-card. These are called “Some Actor”, “Some Activity” and “Some Key Card”, respectively. The connection between
these kinds of entities are relationships; “first class” situations in their own right. For this reason we can define variables
for them as well. These are called “Some Permission”, “Some Possession” and “Some attest to ability”.

Note the “box” for “Some permission” with an “Equivalent to” dependency to the permission connector line. This is
required due to UML’s inability to represent connectors as association classes. To mediate this the association class is
made a part that is equivalent to the connector of the same association class. This allows association classes to have
connected parts as shown. This separation is not required in the SMIF model.

An implementation of SMIF will be able to “match” information about real people and permissions to these patterns.

5.9.5 Example pattern definition in SMIF model

As with all UML representations of SMIF there is a SMIF model counterpart. The model instances that correspond to
the above UML example are as follows:

Semantic Modeling for Information Federation (SMIF) 0.9 57

has ow ning pattern has ow ning pattern

Pattern has ow ning pattern

has ow ning pattern

has ow ning pattern

has ow ning pattern

ow ns variable

s P -, -
Proposition Variable

qualification = Select

ow ns variable

qualification = Optional

qualified w ithin qualified w ithin

ow ns variable

Some Actor : Controlling Actor,
qualifies may be performed by is po! d by qualifies
- T - -
. o attests to qualification = Select Possession
~Permission
possesses ow ns variable
Some Key Card :
ow ns variable . Attest to Ability has credential Expression Variable.
has permission to perform Controlled Entity, Credential
Pr—— s qualifies 2 A
Some Activity : Activity, qualification = Select
Pattern Variable
qualification = Select
s bility : .
qualified within | _Proposition Variable |ow ns variable

qualification = Select

Figure 5.41: SMIF Model Example of Pattern Variables

The above model of instances of the SMIF metamodel define the pattern illustrated using the UML profile. Note that the
names of the elements in the meta model instances correspond directly to those in the UML profile view. We note again
that this would not be a notation used in any application.

The pattern “owns” the pattern variables, including the “qualified propositions” that provide variables for relationships.
Each of the pattern variable instances: “Some Actor”,. “Some Activity” & “Some Key Card” will be “bound” to actual
entities filling those placeholders.

The variables for relationships between those entities: “Some Permission”, “Some Possession” and “Some attest to
ability” will be filled by actual relationships that match the form of the relationships those variables <qualifies>.
Remember that relationships may be “first class™ entities with their own identity, context and time frame — so it is just as
important to have placeholders for them as for the more “noun oriented” entities the usually connect. The relationships
referenced in a pattern provide a template for the actual relationships that fill the slots. In this way each relationship
essential acts as a “sub pattern”.

As associations (not shown in this example) are not temporal it is generally not required to have an explicit variable for
each one — each association or other proposition defined within a pattern will be “replicated” in each instance with its
own identity.

This pattern also shown how “qualification” is used. Most of the pattern variables have a qualification of “Select”.
Select will enable the pattern to “match” any configuration of elements that can fill a// the select variables. In this
example it would be any actor that has permission to perform an activity and there is a credential attesting to that
permission. What is not required for the pattern to match is that that credential is in the possession of the controlling
actor. Alone this may not make much sense, but when used for a query or as an indicator for mediation it could become
meaningful. We could also mark possession as “Negate” in which case it would match all permissions where the actor
did not have possession of the credential. Various combinations of “qualification” provide for the real capabilities of
patterns.

Comparing patterns to an SQL query, “select” is like the columns in the “where clause” and “Optional” would be like
the columns listed after the “Select” statement information to be returned.

58 Semantic Modeling for Information Federation (SMIF) 0.9

5.9.6 Pattern Matching

“Pattern Match” connects a pattern with an actual situation it matches or another pattern it matches. Focusing on pattern
match:

class Pattern Match [Pattern Matchﬂ

«Intersection»
Actual Situation

«Intersection» Situation
Pattern |:|

+satisfies |1 1 |+matches

Pattern Matches matched by
+satisfied by Pattern Match [

Thing 1 {redefines

Situation Matches

1 +binds stated by}
+bound in
Property Binding
Bound Individual * See Also
+has bindin .
Bound Subject 9
* Pattern Bindings Patterns

’0wned Property Binding ‘

+bound to |1 T
Identifiable Entity N
{subsetT s;tates} 1
‘ Variable Binding Pattern Variable
I{redefines has {redefines

binding} bound by}

Figure 5.42: Pattern Matching Model
We see that a “Pattern Match” <satisfies> a pattern that <matches> a situation that is the instance of the pattern. This is
supported by a set of “Variable Bindings” to “Pattern Variables” that the pattern match <states>.

Variable Binding builds on the general concept of a “Property Binding” in that it <binds> something. What it <binds> is
<bound to> some entity based on the the property it is <bound by>. This is similar to the RDF/OWL concept of a
“triple” with the exception that bindings are directly or indirectly identifiable. Variable Bindings are bound within the
context of a pattern match (which could be represented as a named graph in RDF, but there are other approaches to
structures in RDF).

So within a Pattern Match, each variable is bound to one or more individuals that satisfy the constraints of that variable.

5.9.7 Pattern Matching Example

Consider a situation we have already seen: Sue and her Key-card. We will consider if it could be an instance of the
pattern defined in section 5.9.5.

Semantic Modeling for Information Federation (SMIF) 0.9 59

Object Diagram Generalized Pattern Example [Generalized Pattern Instancey

Sue : Person,
Controlling
Actor

may be performed by

is possessed by

<Possession possesses

asserts

_ Permission asserts has permission to perform
ttests to En.t&LBulId.l.u.g_S ..
sActivity
_ Attestto Ability | ,qqerts
has credential
Credential
holds w ithin holds w ithin
holds w ithin
Has card on Jan 12009 ; Actual
Situati
matched by =
interval of
- Enfity Exists
exists for
1/1/2009 : Time
Point

Figure 5.43: Potential instance of a pattern

The above defines 3 “entities” and three relationships.

60

Semantic Modeling for Information Federation (SMIF) 0.9

Object Diagram Generalized Pattern Example [[5| Generalized Pattern Single Bindingﬂ

attests to| asserts

Sue ; Person,
Controlling Actor {2 be performed by

binds | is possessed by

- Pormissi

asserts

has permission to perform —
Enter Building 5
" Activi

has credential
possesses

asserts

holds within

holds w ithin holds w ithin

;) 2009 ; A Situati

bound to| matched by =

bound in

has binding
[Variable Binding
has bmd\ng‘

matched by

satisfied by

bound by

Some Actor : Controlling Actor,
Pattern Variable

ow ns variable

has ow ning pattern

interval of

- Entity Exists £

categorizes

____states

>

satisfies has type

Pattern : Pattern

qualification = Select

is of type
Controlling Actor ;
Entity Type

satisfied by =

exists for

1/1/2009 : Time
Point

Figure 5.44: Binding of a single variable

Figure 5.44 shows a pattern match and the binding of just one pattern variable (Some Actor) to one actual person (Sue).
Just one is shown because all the elements for a pattern binding become somewhat messy to diagram — it is not
something most people need to look at other than to understand the concept. At this point we are just showing one of the
variable bindings, all will be required to match the pattern.

The “Pattern Match” is shown as it <matches> the “Has card on Jan 1 2009 actual situation and this situation
<satisfies> the “General Key-Card Possession Pattern”. The “Pattern Match” <states> a “Variable Binding” that
<binds> “Sue” <bound by> the “Some Actor” Pattern Variable which is <bound in> the “General Key-Card Possession

Pattern”.

Note also that as a convention of showing these instance diagrams in UML the type of the pattern variable is shown as a

one of the types of the variable — this is required to satisfy UML’s rules for instance diagrams. In the actual model the

variable <is of type> the type of the variable.

The above shows just one of the six variables being boun:

Semantic Modeling for Information Federation (SMIF) 0.9

d.

61

has type
VP bound toj
categorizes | Has card on Jan 12009 : Actual [~

bound to

Some Permission ;
Qualified Proposition |bound by
qualification = Select

: e —
Pattern Variable _|bound by

qualification = Select

Some attest to ability :
Qualified P o

qualification = Select Joound by

General Key-Card Possession
Pattern ; Pattern

satisfied by =

‘Situati
matched by =

009 : Tidh fervial of
Point exists for

o bound by
Some Key Card : Qualified |~

~Extent of Type

qualification = Select

Some Possession ;
Qualified Proposition |[bound by

|
|
|
|
|
|
|
bound in
- Variable I
Bindi I
! Enter Building 5 |has permission to perform
bound in! | binds 4
: Variable Binding |
BETr |
has binding| it Al
:Variable I
Binding |
|
| hind attests to
has credential -
bound ml possesses inds!
:Variable Binding ~Permission
binds!
:Variable —Possession
Binding bound in
is possessed by
Sue ; Person,
binds|| ~ Controlling may be performed b)
Actor

qualification = Optional

Some Actor : Controlling Actor,
Pattern Variable Eotndoy

qualification = Select

Figure 5.45: Full Binding of Pattern

Figure 5.45 shows all the variable bindings owned by the pattern match. As we said, it is not that readable but provided
for reference. The set of all the bindings “proves” that the actual situation matches the pattern.

5.9.8

Computed Variables

Some variables in a pattern are computed based on other variables. Variables may be computed using either Expression
Variables or Subset Variables.

62

Semantic Modeling for Information Federation (SMIF) 0.9

package Calculated Variables [[5£] Calculated Variablesy +has ow ning pattern
{redefines property of, redefines stated by

Pattern Variables 1

«Intersection»
Pattern

+ow ns variable

. | {subsets states, redefines has property} «enumeration»
Variable Qualification
Pattern Variable Select
+qualification : VVariable Qualification [1] Optional
+explicit : Boolean i Default
+subsets Variable Subsets Assert
1 Negate
Exactly One
There Exists
All
+qualified +has
f : ithin Qualified Proposition *
Expression Variable Proposition Variable within subset
0.1 Subset Variable
+qualifies | 1
Proposition

Figure 5.46: Subset and Expression Variables

Figure 5.46 shows the definition of subset and expression variables. Both of these types compute the value(s) of a
variable based on other variables.

Subset Variable uses a base variable it <subsets> and applies additional constraints to the base such that the subset
variable holds only those values that conform to these constraints. The most common constraint is probably the type of
the subset variable as defined by <is of type>. The subset may also have required (<select>) characteristics and
relationships as well as a general <condition> expression.

Expression Variable defines a <computation> expression that provides the value(s) for the variable. Note that as
expressions may not be “reversible”, it may not be possible to assert an expression variable. The ability to assert ot map
to an expression variable is implementation specific.

Semantic Modeling for Information Federation (SMIF) 0.9 63

5.9.9 Subset Variable Example

package Calculated Variables [Subset Example UML Profiley

Actual Entity
A

A V.
«Facet Of»
«Relationship» «Facet Of»
Possession
|
’ Social Agent ‘ «Role» is possessed b 05S6SSES «Role»
A Controlling Actor e Y \ 4 Controlled Entity
* | {subsets is controlled by} {subsets has control over}

«Pattern»
Controlling People Pattern

«Pattern Variable»
Some Person : Person
{qualification = Select}

«Subset of»
«Pattern Variable»
Any Possession : Possession
«Pattern Variable» is possessed by {qualification = Optional}
Controlling Person : Controlling Actor
{qualification = Optional} possesses

«Pattern Variable»
Some Possessions : Controlled Entity
{qualification = Optional}

Figure 5.47: Subset Variable Example in UML Profile

Figure 5.47 shows a little more context for the “Possession” relationship we have been using as well as the “Controlling
People” pattern that uses this relationship.

Controlling actor as a role

Note that “Controlling Actor” is defined as a “Role” and that this role is a <<Facet Of>> an Actor. Note also that
“Person” in an indirect subtype of “Actor”. A role is a dependent classification of some entity. What this model says is
that any particular actor may be a “Controlling Actor” in various context or timeframes but that an actor is not
necessarily a controlling actor. The controlling actor role may come and go with regard to any particular actor, such as
“Sue”. By saying that “Controlling Actor” is a <<Facet Of>> an actor, we are saying that only an actor may play this
role. You must first be an Actor, then you can be a controlling actor. Since Actor is not a role (or other kind of facet, we
will explore this in another section), an actor is always an actor — it is essential to their nature. Since “Person” is an
indirect subtype of actor, a person may be a controlling actor. Since “Possession” is related to “Controlling Actor”, any
person that possesses something is implicitly a controlling actor — they control what they possess.

Not shown in this diagram is that possession is a subtype of “Control” which relates the same roles. So there may be
some controlling actors that don’t possess anything (this could be added to the pattern but we are trying to keep it
simple).

Likewise, playing the role of a “Controlled Entity” can be played by any “Actual Entity”.

The “Controlling People Pattern”

64 Semantic Modeling for Information Federation (SMIF) 0.9

“Controlling People Pattern” is a pattern that starts with a “Select” of a “Person”. All people will “Match” this pattern.
Besides matching people we want the pattern to tell us if each person is a controlling actor and, if so, anything they

possess. We may want to use this pattern for a query or some kind of data mapping.

For each matched pattern there will be exactly one value bound to “Some Person”. If that person “plays the role” of a
“Controlling Actor” then the “Controlling Person” variable will be populated with the same person. Said another way,
the set of all “Controlling Persons” is a subset of all “Some Persons” based on “Some Persons” playing the role

“Controlling Actor”.

All “Possession” relationships from “Controlling Person” will be bound to the “Any Possession” relationship and the
“Some Possessions” variable. Note that “Any Possession” and “Some Possessions” may be bound to multiple values.

5.9.10

Controlling Person Pattern in the SMIF Model

has supertype

has general

Definition of Possession Relationship

‘ Control : Relationship T ‘

has supertype

|
|
|
|
_ Properties Relationship |
|
|
|
|
|

| |
| |
| |
| |
| —Generalization I i ionshi
I ~Properties Relationship _ property of | pogsession : Relationship Type [Property of
|
| | has type
| has specialization |
| Responsible : Facet | has property has property
Performer : Entity Classification : 1by:0 0 ip
| Type Constraint : Property Type Type
| has supertype has generalization ~S—_——— - -—T————— - = —_—————— T — - - - - - - =7
| | bound by bound by
I ~Snecilzation |
| |
| has specific N] is of type
3 = is of type "
| is of type| is of type| is of type| \l
|
| |
has binding categorizes has binding |
| _-Owned has binding bound 0| Any Possession [bound to has binding| :Owned |
| Binding Relationship |states Binding |
| bound in qualifies bound in |
|
! |
| binds qualified w ithin binds |
| Pattern Variable Proposition Variable Pattern Variable |
| qualification = Select qualification = Optional qualification = Optional |
| subsets ow ns variable ow ns variable ow ns variable |
| |
has subset |
| Contolling Person : has ow ning pattern stated by |
| Subset Variable has ow ning pattern [~ Contolling People Pattern : Pattern Jhas ow ning pattern |
1 I
| qualification = Optional |
'b Definition Controlling People Pattern)

Figure 5.48: SMIF Model Instances of the Controlling Actor Pattern

The UML Profile diagram in figure 5.47 has a corresponding model as instances of the SMIF model as shown in figure

5.48. Notice that “Controlling Actor” is a “Role” and that it is constrained, using a “Facet Classification Constraint” to

be a role of an “Actor”. Person is an indirect subtype of Actor.

Semantic Modeling for Information Federation (SMIF) 0.9

65

The “Controlling People Pattern” owns a “Select” property “Some Person”, so all persons will be matched by this
pattern. The optional “Controlling Person” variable will have a value only if the person matched in “Some Person” is
also a “Controlling Actor”. That Controlling Actor Person may then have “Some Possession” relationships with “Some
Possessions”. Note that as “Controlling Persons” are selected there may be multiple values bound to “Any Possession”
and “Some Possessions”.

510 Mapping

Mapping defines how different concrete or logical data structures represent the same or related concepts as defined in a
conceptual reference model. By “grounding” the meaning of the data structures in common concepts SMIF provides a
foundation for integrating information from multiple sources, translating between data representations and federating
information for analytics.

The basis of federation is patterns (See section 5.9). A mapping is a pattern that defines a correspondence between two
sub-patterns, one “Concrete” and one “Reference”. The concrete pattern shows how data structures represent reference
concepts. The sub-patterns are typically derived from different, independent, models. The patterns can then operate
bidirectionally (as ling as no functions are used) — if data in the concrete source changes a SMIF implementation can
update instances of the reference model. If instances of the reference model change, a SMIF implementation can update
the concrete data source.

When using the SMIF UML profile the both models are loaded into UML. The mapping patterns are then represented
using UML composite structure diagrams augmented with profile support. We will start with an example expressed
using the UML profile and then see how it is represented in the SMIF model.

5.10.1 Mapping Components Example

package StixMapExample [STIX Mapping Overview u
[STIX Concrete Data | (What concrete types | (Threat/Risk Conceptual | (Rules defining mapping)
|Model | |may represent what | |Reference Model | | |
conceptual types

' || || . '
«XSDcomplexType» | «Mapping Rule» |

I «XSDcomplexContent» _I I_ —_ _«R_epre_serls»_ _I I_ = «Role» I STIX Threat Actor Rule
| «XSDsequence» | | | | Threat Actor | | |

{strength = global}
| ThreatActorType | | | | | | |
| ! ! P '
| «XSDcomplexType» | | | | | | «Mapping Rule» |
| «XSDsequence» | r| ____«Represents» _I_|_ Identifiable Entity | | |STIX Statement Rule |

StatementType {strength = local}

| L L I I I
N —— — - - N ——_—— - - N —_——_— - - - |

Figure 5.49: STIX Mapping Overview

Our example will focus on the mapping of “threat actors” and “statements” as defined in the “Structured Threat
Information Expression” (STIX) XML schema. The STX schema and everything it references are imported into UML
using off-the-shelf UML tool capabilities. This results in a UML model that directly reflects this XML schema and can
then be used as the basis for mapping to the operational threat risk conceptual reference model (OTR).

Figure 5.49 shows the “top level” of this mapping and the basic components of any mapping.

* A mapping connects two models, one considered the “concrete” model and once considered the “reference”
model. The concrete model is the one more specific to a technology, system or solution where as a reference
model is more conceptual and less committed to concrete concerns. In this and many cases this choice is
reasonably clear. There are cases where the models are at about the same level of abstraction, in which case the

66 Semantic Modeling for Information Federation (SMIF) 0.9

choice may be arbitrary — but making a choice of which to call the “concrete” model and which to call the
“reference” model is required.

e The “STIX Concrete Data Model” is the concrete model, it is directly derived from an XML schema intended
for information exchange between STIX enabled systems. Classes within this model are “ThreatActorType”
and “StatementType”.

e The “Threat/Risk Conceptual Reference Model” (OTR Model) is the reference model in this example. This
model has been constructed with other models (including STX), threat relevant literature and stakeholder input
to capture the concepts represented by STIX and other data models. The goal has been to identify and define
the concepts the data is representing and model them as best understood by stakeholders across multiple
domains of interest impacting the analysis of threats and risks. The OTR model is not a data model, it is a
model of the domain as stakeholders conceive it. This conceptual model is used to “pivot” between different
data representations.

¢ Adata element, such as ThreatActorType is intended to model data that represents something in the “real
world” (or perhaps a world we imagine as possible, but based on the real world). For each “real world” concept
that a data element represents, a <<Represents>> stereotype is defined. This says that the data structure
contains some information about the represented concept. <<Represents>> is not generally sufficient to fully
map data, that is not its intent, it is a declaration that it can contain information about some concept which is
then used to filter the more detailed mapping rules such that only things that represent a concept are mapped to
it. We will see how this works, below. In the example we see that the STIX class “ThreatActorType”
<<represents>> a real-world threat actor as defined in the OTR model. We also see that a STIX
“StatementType” can represent information about any “Identifiable Entity” as defined by the OTR model.

¢ The rightmost column “Rules defining mapping” shows the specific mapping rules that define how and when
the STIX data types represent the OTR concepts. This “insides” of these rules are UML structured classifiers
that comprise the rule details. In an implementation of SMIF these rules help implement the translation and
federation of data defined using the mapped data models.

* One other element that can be seen at this level is the “strength” of the rules. Strength defines when a rule is
asserted (triggered). The “STIX Threat Actor Rule” has “strength-global” which means it always applies and
can be triggered by any data source changing. The “STIX Statement Rule” has “strength=local” which means it
is only triggered when required to fulfill another rule — such as the threat actor rule. A 3™ possibility is
“strength=default” which defines a rule that is only triggered if no other rule has mapped the elements.

The above example should make clear these basic mapping elements; the concrete and reference models, how data
elements may represent concepts and the top-level identification of mapping rules. In the following sections we will look
at each of these in more detail.

5.10.2 STIX Concrete Data Model

Semantic Modeling for Information Federation (SMIF) 0.9 67

package STIXThreatActorMap [STIX Threat Actor u
XSDelement
ThreatActorType <<X$Delernent>> fSource >
version : ThreatActorVersionType -Informtlon_So:r:eJl InformationSource Type W

X B «XSDelement»

- «XStDann_otaltlogjlilx L -Description
epresents a single - XSDel t
Threat Actor.ThreatActors 0.. B adTextType J«XS .en.'\en ”
are characterizations of «XSDelement» |id : QName ~Description
malicious actors (or -Short_Description |ordinality : positivelnteger |0, *
adversaries) representing a = 0.~ structuring_format : string
cyber attack threat including ”
presumed intent and
historically observed)
behavior. In a structured
sense, ThreatActors consist «XSDelement» StatementType
of a characterization of L -Intended_FEffect | timestamp : dateTime
identity, suspected 0.*
motivation, suspected
intended effect, historically
observed TTP used by the «XSDeIe.merﬂ»
ThreatActor, historical L -Motivation
Campaigns believed 0.*
associated w ith the
ThreatActor, other [}
ThreatActors believed
associated w ith the «XSDelement» z
ThreatActor, handling ~Identity, IdentityType
guidance, confidence in the =g id - QName
asserted characterization of 0.1 idref - QName
the ThreatActor, source of]
the ThreatActor information,
etc.
«XSDelement» string
L -Title | {id = "string"}
0.1 | = preserve
«XSDelement»
XSDel ; -Confidence [,0..1
« ement» o
_Confidence ConfidenceType
= oA timestamp : dateTime
\ ' |timestamp_precision : DateTimePrecisionEnum=s...

Figure 5.50: STIX Concrete Model Fragment

Figure 5.50 shows a fragment of the STIX model dealing with threat actors. As noted above, this is directly derived from
the STIX XML Schema. For the example we will not delve to much into the specifics of the STIX model, it is presented
so that the mapping example can be better understood.

There are a few things to note about this model. First, there is a good correspondence between “ThreatActorType” as
defined here and the general concept of a threat actor. As is typical, the STIX definition makes threat actor specific to
Cyber threat actors, for the purposes of STIX. This is more narrow than the general concept of a threat actor — which
could cause many kinds of mayhem.

We also note that information about the threat actor (the real actor in the real world) is intermixed with metadata about
the threat-actor information, such as confidence. Other than understanding the concepts, there is no deterministic way to
know that “Motivation” is probably about the actor where as “Confidence” is about the information record. One of the
challenges of mapping is untangling these mixed concerns.

Note that “StatementType” is used in the STIX model for “Intended effect” and “Motivation”. In STIX “StatementType”
is used where there are no explicitly modeled data elements for a concept, a StatementType just provides a definition
and some metadata for these concepts. In other models these elements may be explicitly modeled, a challenge for

68 Semantic Modeling for Information Federation (SMIF) 0.9

integration. Having a motivation or metadata about confidence is not at all specific to threat actors so the OTR model
defines these concepts at a much higher level so that they can apply to anything that the would make sense for that
concept. So having a name can apply to anything we can identify where as only a threat actor can perpetrate a disruptive
action (based on how these concepts are defined in OTR). Conceptual reference models are define concepts free of the
context of a particular application or data structure, reflecting their meaning to stakeholders.

As with all UML models, properties or relationships that are defined for a “supertype” (or superclass) apply to all
subtypes. So from this diagram we can see that a “threat actor” (like any identifiable entity) may have a name but that if
you perpetrate a disruptive action you must “play the role” of a threat actor that must be a “social agent” (person or
organization). We will delve into roles, below.

Semantic Modeling for Information Federation (SMIF) 0.9 69

5.10.3 OTR Conceptual Reference Model

package STIXThreatActorMap|[[£5 Threat Risk Threat Actory
—_——_— — - = — — = = = = =
| e |
o | Statement |
o a attributes |
eantifiable Entity B +resulted in I +w as stated in | +statement date and time : Value Type |
- T . +version : Value Type
Assertion Statement i
«documentation» | +ransaction id : Value Type |
An identifiable entity is any |
identifiable thing other than | Definiti
values, this includes | HEION |
individuals, types, axioms, attributes
situations, speech acts, +defines | +defined by | +text definition : Text |
information structures, etc. - ; : N +external reference : IRl Identifier
Identifiable entities alw ays ! Definition Relationship | +external term : Term |
have some kind of identity I +summary description : Text |
and may have identifiers.
Note that identity is an | |
abstraction that may have Confidence |
representation in models -confidence about bhas confidence s
%2:%{;:2?5; ilf,] R * Confidence in Assertion| 0.1 | confidence metric : Confidence Metric | |
a"sign". N - - T
_[OWL] _Entity type (Implied +names +has name «Value»
in section [OWL] 5.8) as an - - N Name
instance of rdfs:Class 1. Naming
+preferred for +has preferred «Value»
0.1 Prefered Identification 0.1 'der;fifier
Temporal Entity I
o Unique Identifier
«Relationship»
Objective of Stakeholder
| +has objective | Objective
| Social Agent
{subsets
«Facet Of» «Role» realized by}
|Person | |Organization | enuptiveiAction Jo »
+perpetrates | *
1.%
«Role» st I(:Rcf)lle)l)d —
Danger Source akeholder J+objective of
lr T «Relationship»
«Role» +perpetrator || Perpetrate
Threat Actor 1
{subsets |, ,
«documentation» achieves}
Role of an actor; all or partially responsible for some undesired | Objective to Disrupt
situation - threat, risk, or attack. Threat actors have intent to do
harm. 1.* | {subsets has
— | objective}

Figure 5.51: OTR Conceptual Reference Model Fragment

70 Semantic Modeling for Information Federation (SMIF) 0.9

The OTR model fragment is figure 5.51 shows the properties and relationships that will be used to map concepts in the
STIX model. Note that these two models are of a very different “shape”, use the same or different terms but clearly have
commonality. A fundamental difference is that in the OTR model concepts are defined for their most general
interpretation — This is how OTR is structured, how general to define reference concepts is a decision left to the model
authors..

Another thing to note is that not all the information in either model is “complete” relative to the other. The purpose of
conceptual reference models is to capture shared concepts across domains and different data models. The concepts that
are mapped between different data models can be mapped — the others are ignored or must be populated with data
specific rules. It is simply not practical for every concept of every data model to be mapped — so we don’t try.

It should also be noted that there is no “required” reference model, any number of reference models may be used to
accomplish some mapping. OTR is a reference model for threats and risks, it does not claim to be the only one possible
or useful.

As with the STIX model, we will not look to deeply into the specifics of the OTR model semantics as our purpose here
is to use these model fragments as part of the mapping example.

5.10.4 STIX/ OTR Mapping Rule

class STIX Threat Actor Rule [STIX Threat Actor Ruleﬂ

«Focus» Match «Focus»
STIX Threat Actor : ThreatActorType «vateh TRThreat Actor : Threat Actor
{mapping pattern = Concrete} {strength = global} {mapping pattern = Reference}
Title " «Match» i
«Pattern Variable» «Pattern Variable» |identified by «Pattern Variable» identifies

«Pattern Variable» g1|x Title :string TRName : Name

: ldentification

Identit -
I
«Patter);n Varfs ﬂ);ern Vil «Pattern Variable» has preferred preferred for
§‘FBP B : IdentityType «Match»

TRID : Unique Text Identifier «Pattern Variable»

: Identification Preference

confidence about

«Pattern Variable»
: Confidence in Assertion

«Pattern Variable»
STIX Confidence : ConfidenceType
»

has confidence

«Pattern Variable»
TR Confidence : Confidence

Confidence
«Pattern Variable

«Match»

metadata about

«Pattern Variable»

«Pattern Variable»
: Statement

: Metadata relationship «Subset of»

I«Malch»

{property path = timestamp} has metgdata

{property path = statement date and time}

«Match»

{property path = version}

{property path = version}

Intended_Effect
«Pattern Variable»

«Pattern Variable»
STIX Effect : StatementType

«Match»

«Pattern Variable»
TR Stakeholder : Stakeholder

«Pattern Variable»

«Pattern Variable»

Objective of Threat Actor : Objective

has objective

: Objective of Stakeholder

objective of

{qualification = Optional}

Figure 5.52: STIX - OTR Threat Actor Rule

Figure 5.52 shows the detailed mapping of STIX ThreatActorType to OTR Threat Actor as the “composite structure” of
the “STIX Threat Actor Rule” we saw in the summary. It does this using pattern variables, relationships and “Match”

rules.

Additional examples of mapping included in the profile section.

Semantic Modeling for Information Federation (SMIF) 0.9

71

6 SMIF Conceptual Model Reference (Normative)
6.1 Diagram: SMIF Packages

package SMIF Conosptusl Mokl [S\AFPadegasy
<«Conoept Model»
Associations
| Assodation
= Assodation Type
| Assodiations
«Conoept Model»
Mapping
== Conputed Facade
Facade
Mapping
Mietch Bd
Metch Rue
ion Rue
] Assertion Strength Pattern of Type
| Facades Pattem Variade
#=| Mapping Rues Propcsition Varigble
== Type Pattem Variable
El Vaiable Binding
[T Vaiable Qudlification
| Patterms
1, Situation Kinds
«Conospt Model» «Conoept Model» «Conoept Model»
Records Relationships] Situations
=| Recod = Relationship «Conoept Node = Actual Situation
= Record Type! = Relationship Type! Rul i=i Situgtion
|| Records || Relationships es =] Stuation Type
Conditional ¥t| Situations
ﬁ OJ’dtor’d Rue .
«Conaept Model» «Conoept Model» g)mr:g Constraint
Types Values Ersll.?rerated
Entity Type Base Unit Type Equivaent I
Intersection Type Quantity kind Facet Qassification Constraint «Conoept Model»
iz=i Type iz=i Scalar Quartity Generdlization Constraint Top level
=] Union Type Structured VAlue Mutiplicity Constraint £ Actal Ertity
] Type-instance Structured Value Type == Property Constraint s
| Types Systemaf Units Property Transitivity Constraint = Identifiable Ertity
Unit Type Property Type Constraint o
== Unit Value =i Rie
E Value Type Constraint
Value Type Uni Constraint
[0 Data Vaue Diioint property constraints
@ Measurerent Vaue .| General Ries
3 Nureric ;| Property Gonstraints
[0 Primitive Value Rues in Context
7l Bodean Rues Summary
[Integer Type Constraints
[Nurrber
7 Real Nunber
[Text
= FALSE
= TRUE
& Values

f. SMIF Packages

72 Semantic Modeling for Information Federation (SMIF) 0.9

Semantic Modeling for Information Federation (SMIF) 0.9

73

7 SMIF Conceptual Model::Associations

An association asserts a formal condition involving related things, the association ends. An association may be asserted
within a context as true or false within that context. Each association has a number of bindings of which are immutable

for that association.

Associations are differentiated from relationships in that associations are fully dependent on the things they relate. These

n"non:

are known as "formal", "thin", "internal" or "intrinsic" relations in much of the literature.

7.1 Diagram: Associations

package A&odaticrs[Aesodetiorsy
«Suffident»
BExtent of Type -Kztego’r:zsi Thing ‘
{redefines contextudizes} +oinds; 1 ‘r
See Also «Suffident» |
- - [fnnaieay |
{subsets in context of}
- . +boundto 1
Iklps 1 +has type B Indivi T
’ Type +property of .
Properties - 0.1 Properties Relationship OGRS It ™ o et
T +s of type Bound Subject ” —
{chain = constrained +halds within| *
by, is of type} Negation
Assertion
“+has property | * ~+ound in * +has binding * * [+negates +assarts|*
’ ErlityType‘ ’ Property Type Property Binding ‘ ’ Proposition
+bound by| 1 +has binding| * JAY
{redefines has type} {redefines categarizes}
Owned Property Type 1 *
- rsubsets bound by} {reciefines hes bindingy | O ned Property Binding
{subsets states, *
redefines has {stat$ s
property} redefines hes
binding}
{redefines property of, | 1 {redefines boundto, |1
redsfines stated by} «Sufficient» - redefines stated by}
’ Property Omner Type «Restriction» - Property Omer }—r\—
{redefines has type} {redefines categorizes)
{subsets hes type} Association
{redefines
categorizes}

g. Associations

74 Semantic Modeling for Information Federation (SMIF) 0.9

7.2 Class Association

An association makes a logical statement involving related things, the association ends. An association may be asserted
within a context as true or false within that context. Each association type has a number of bindings of which are
immutable for that association.

An association may be true or false within its context and is atomic in its truth value.

Associations are differentiated from relationships in that associations are not situations - they are not temporal and do
not change over time. Associations may be a consequence of relationships or other situations or may be derived from
qualities of associated ends.

Associations can "own" owned property bindings as their "ends".

See also: Relationship

[Guizzardi] Intrinsic Relation

[UML] Link

[DOLCE] Formal Relation

Direct Supertypes
Property Owner, Proposition

Associations
/ <<Restriction>> : Association Type [1..*] Subsets: has type:Type

7.3 Class Association Type

A type of Association (See Association for details) which defines a set of "Association Property Types" which are the
types of association property bindings. Associations are not situations - the are not temporal things. THis does not
prevent subtypes of associations from being situations.

[Guizzardi] Intrinsic Relation Type

[UML] Association

[OWL] For binary associations, may be considered a pair of properties that are Inverse Object Properties.

Direct Supertypes

Property Owner Type

Associations

/" <<Restriction>> : Association Redefines: categorizes:Thing

Semantic Modeling for Information Federation (SMIF) 0.9 75

8 SMIF Conceptual Model::Expressions

Expressions define computations across SMIF models.

8.1 Diagram: Expressions

package Bxpressions[[£] Bxpressions]|

Context | *evaluatesin Expression Context Idertifiable Entity
{subsets in context of}
0.1
{subsets contextualizes}
) +oontextualizes|
Type | *Hresiting type +Hetumed by[
[1.* Resut type -

: 0.1
M Function Implementation
{subsets evaluates in}|
: - «Suffident»
«Suffident» | {redefines hes type} +rrplemented by on text - Text [0.1] etes
= — ’ {suibsets contextualizes} 0.1 | +expression text language : Text [0.1] Bxpression Bvalustion
Function Called T
+received by {redefines property of}
{redefines categorizes} T T I
OO Target +susedby |* +evaluated by
il o =_ e 2
+raverse to relation : Bodean [1] =false * ity] *
+nverse : Bodean [1] =false ek » e “
+Hraversed by | *
«Sufficient | {subsets has property} e
il Traverse Through Equality Constraint
P
oy el s)
o e i

1.*

h. Expressions

Expressions define computations

8.2 Class Constant Reference

A calculation that returns a thing identified by <has value>.

[FIBO] Constant

[FUML] LiteralSpecification where subtype of literal is determined by the type of <has value>.
-Literallnteger->type is Integer or a subtype

-LiteralReal-> type is not integer or a subtype

-LiteralBoolean->type is Boolean

-LiteralString->type is Text

76 Semantic Modeling for Information Federation (SMIF) 0.9

Direct Supertypes
Expression Node

Associations

" has value : Thing [1]
through association: Constant Value

A constant value referenced in an expression.

8.3 Association Constant Value
Relationship defining a link to a constant value within an expression.

Association Ends
e has value : Thing [1]
A constant value referenced in an expression.

e referenced by : Constant Reference [*]
Referencing constant expression node.

8.4 Class Equality

Returns TRUE if all <has equal> things have the same value or represent the same thing or set of things regardless of
how they are represented.

Equality will return TRUE or FALSE.

[ISO11404: Equalityln every value space there is a notion of equality, for which the following rules hold:

~ for any two instances (a, b) of values from the value space, either a is equal to b, denoted a="b , or a is not equal to b,
denoteda #b ;

~ there is no pair of instances (a, b) of values from the value space such that botha=banda#b;

~ for every value a from the value space,a=a;

~ for any two instances (a, b) of values from the value space, a="b ifand only ifb=a;

~ for any three instances (a, b, ¢) of values from the value space, ifa=b and b = c, then a = c . On every datatype, the
operation Equal is defined in terms of the equality property of the value space, by:

~ for any values a, b drawn from the value space, Equal(a,b) is true if a=b , and false otherwise.

Direct Supertypes
Expression Node

Associations
e has equal : Thing [1..*]
through association: Equality Constraint

Set of things that must have the same value or represent the same thing or set of things for Equality to return
true.

8.5 Association Equality Constraint

Relationship defining set of things that will be evaluated for equality.

Association Ends

Semantic Modeling for Information Federation (SMIF) 0.9 77

e has equal : Thing [1..*
q dhing
Set of things that must have the same value or represent the same thing or set of things for Equality to return
true.

e has equality : Equality [*]

Equality constraints for a thing.

8.6 Class Evaluation

The evaluation of an expression. All references to an evaluation shall return the result of evaluating the <evaluates>
expression node. All expression nodes referenced within an evaluation shall return the result of evaluating that
expression node.

An evaluation may be used in place of anything that requires the <resulting type> of the evaluation.

Direct Supertypes

Expression Context

Associations

e evaluates : Expression Node [1]
through association: Expression Evaluation

The expression node "head" an evaluation evaluates.

8.7 Association Expression Context

Context in which an expression will be evaluated.

Direct Supertypes

Extent of Context

Association Ends
/" evaluates in : Context [0..1]
Context of evaluation and namespace resolution for an expression.

e contextualizes : Expression Context [*]

Expressions referencing a context.

8.8 Class Expression Context

An abstract element defining the static or dynamic evaluation context and resulting type of an expression.
An expression context that is referenced by another expression context inherits the referencing context by default.
Direct Supertypes
Identifiable Entity
Associations

e evaluates in : Context [0..1] Subsets: in context of:Context
through association: Expression Context

Context of evaluation and namespace resolution for an expression.

e resulting type : Type [1..*]

78 Semantic Modeling for Information Federation (SMIF) 0.9

through association: Result type

Type of the result of a function
[UML] type (of an operation or expression).

8.9 Association Expression Evaluation

Relationship defining the expression that will be evaluated by an evaluation.

Association Ends
/s evaluates : Expression Node [1]
The expression node "head" an evaluation evaluates.

/s evaluated by : Evaluation [*]

Evaluations of an expression node.

8.10Class Expression Node

An abstract class representing the computation of a value which is then bound to the context from which it is called.
Each expression node has a type of the most general type it can return.

An expression node may reference other elements. Where the other elements are also expression nodes they will be
considered part of the referencing expression and evaluated in the context of that expression.

The set of related expression nodes forms a "tree" for evaluation.

[FIBO] Expression
[UML] Expression
Direct Supertypes
Expression Context
Attributes

@ expression text : Text [0..1]
Textual expression of the expression which is further refined by subtypes of expression.
[UML] StringExpression

' expression text language : Text [0..1]
expression language used for the expression text

Associations

/" evaluated by : Evaluation [*]
through association: Expression Evaluation

Evaluations of an expression node.

8.11 Class Function Call

An element of an expression that performs some operation based on a function type and produces a result. Le. plus(a,l).
Arguments are bound to the function call via bindings.

Direct Supertypes

Expression Node, Property Owner

Semantic Modeling for Information Federation (SMIF) 0.9 79

Associations

/s calls : Function Type [1] Redefines: has type:Type
through association: Function Called

Function called

8.12 Association Function Called
Relationship defining the function (a type) called by a function call.
Direct Supertypes

Extent of Type

Association Ends
/ calls : Function Type [1] Redefines: has type: Type
Function called

v is used by : Function Call [*] Redefines: has type: Type

Function calls using a function declaration.

8.13 Association Function Implementation
Relationship defining the implementation of a function by an expression.
Direct Supertypes

Expression Context

Association Ends
/ implemented by : Expression Node [0..1] Redefines: has type: Type
Expression which defines the implementation of a function.

v implements : Function Type [0..1] Redefines: has type: Type

Function implemented by an expression

8.14Class Function Type

A declaration of a function which performs a calculation on arguments (properties) to produce a result (function result).
L.e. the definition of plus(a:Number, b:Number).

Functions are intended to be side-effect free and context free (they only depend on their arguments and don't change
anything) but assertions to specify that certain functions are pure may be required,
Note: FUNCTION ARGUMENTS ARE PROPERTIES of the function.

[FUML] Operation where ownedParameter corresponds with <has property> and type corresponds with <resulting
type>.

Direct Supertypes

Expression Context, Property Owner Type

Associations
e implemented by : Expression Node [0..1] Subsets: contextualizes: Thing

80 Semantic Modeling for Information Federation (SMIF) 0.9

through association: Function Implementation

Expression which defines the implementation of a function.

/" is used by : Function Call [*] Redefines: categorizes: Thing
through association: Function Called

Function calls using a function declaration.

8.15Class Object Operation Type

An operation bound to a specific "receiver" in the "Object Oriented" sense.
[FUML] Operation

Direct Supertypes
Function Type
Associations

e receiver : Property Type [1] Subsets: has property:Property Type
through association: OO Target

The property that is the receiver of an object operation.
[UML] class (of Operation)

8.16 Association OO Target

Relationship defining the "target" type of an object oriented function.

Association Ends

e receiver : Property Type [1] Subsets: has property:Property Type
The property that is the receiver of an object operation.
[UML] class (of Operation)

e received by : Object Operation Type [*] Subsets: has property:Property Type

The Object Operation for which a receiver is defined.

8.17 Association Result type
Relationship defining the type or types returned by an expression evaluation.

Association Ends
e resulting type : Type [1..*] Subsets: has property:Property Type

Type of the result of a function
[UML] type (of an operation or expression).

7 returned by : Expression Context [*] Subsets: has property:Property Type
Method returning a type.

Semantic Modeling for Information Federation (SMIF) 0.9

81

8.18 Class Traversal

Traversal from the current <evaluates in> context to another across a relation or other structure.

A traversal is a structure such that the structure's bindings may hold other properties of a traversal constant as
independent variables where <traverses through> is the dependent variable. The traversal shall be considered to have the
type of the relation it is traversing. Traversing binary relations does not require any bindings.

[OWL] ObjectPropertyChain
Direct Supertypes

Expression Node, Property Owner

Attributes

< traverse to relation : Boolean [1] = false
Where traverse to relation is false, the traversal will return the bound element(s) of the <traverses through> property

from the current context via any intermediate relationships.

Where traverse to relation is true, the traversal shall return the structure/situation/relationship owning the property
binding.

By default, traverse to relation is false.

< inverse : Boolean [1] = false
Indicates that the traversal is defined based on properties that reference the current context. This results in traversing

"backwards" across a property to an inverse property or the relation.

Associations

e traverses through : Property Type [1..*]
through association: Traverse Through

Property or properties through which a traversal traverses as the dependent variable(s).

8.19 Association Traverse Through

Relationship defining the property of the current context which will be traversed.

Association Ends
e traverses through : Property Type [1..*]
Property or properties through which a traversal traverses as the dependent variable(s).

e traversed by : Traversal [*]
Traversals through a property.

82 Semantic Modeling for Information Federation (SMIF) 0.9

9 SMIF Conceptual Model::Facets

The facet package defines facets, roles and phases. Types that "mix in" to other types in a specific context or timeframe.

9.1 Diagram: Facets

package Fanets[Faoasy

-Hn context of | 1..*

| Thing |
+categorizes| “+oontextualizes| *
«Suffident» «Suffident»
{redefines contextudlizes} «Involves»
Extent of Context Identifiable Entity [hes entity
1
{redefines
Bxdent of Type categorizes)

bindings
for entity

| Conted
{subsets in context of}
+has type| 1..*
Type
[tessuprte
{chain = constrained by, I"as*speoﬁc} Relati ip
«Invalves» -bindings for
aost «Relationship»
Facet | 1o peets has type) " | Facet of Entity
Situation Type
AN
ey | [Fee | | === |

i. Facets

9.2 Class Category

A category is a classification or division of people, events or things regarded as having particular shared characteristics.
Categorization is typically contextual, potentially transient and may or may not be formally defined.
As with all facets, categories are non-rigid. Something classified by a category must also be classified by an entity type.

Direct Supertypes

Facet

Semantic Modeling for Information Federation (SMIF) 0.9

83

9.3 Class Facet

A facet is a "mix in" type that defines an aspect of something but does not define the identity or "fundamental" (A.K.A.
"Rigid") type of that thing, but some potentially transient role, phase or other way to classify it. Something must have at
least one type that is not a facet to define that things identity.

Facets do not define independent identity of the referent but technology implementations may create independent objects
to represent a facet.

An instance of a facet must also have a type that is not a facet to provide the identity of the instance.

The type(s) a facet may categorize may be constrained by a Facet Generalization Constraint. E.g. Policeman is a role of
a person.

[Guarino1994] Non-Substantial sortal
[Guizzard] Non-Rigid Universal: A universal G is non-rigid iff for a w €W There is an x such that x €extw(G), and
there is a wE W such that x extwlG)

[SOWA1999] Prehension (Relative

Direct Supertypes
Type

Associations
v <<Sufficient>> : Facet Classification Constraint Subsets: has general:Type

9.4 Class Facet of Entity <<Relationship>>

Facet of entity is the binding of a particular entity to a facet. May also be considered an "as a" relationship. In the case
of a role, it states that an entity plays the role, e.g. "Joe as a policeman". In the case of a phase, it states that an entity has
that phase and that it is a phase of that entity, e.g. Sue as a teenager.

Facet of Entity is a kind of contextual categorization in that the entity assumes all of the characteristics of the facet
where the Facet of Entity is asserted. E.g. if Joe has a policeman role, Joe is a policeman.

Facet of entity is an "Extent of Type" association reified as a relationship in that the binding of the entity to the facet
may be valid in particular context or time frame. Facet of entity may be the consequence of a relationship. Note: Not
represented as an association class due to OMG-MOF limitations.

Facet of entity may only relate entities that have a type compatible with the type of the facet, as defined by a Facet
Classification Rule.

[FIBO] (for roles of actors) AgentInRole.

[FIBO] (for roles of anything else) ThingInRole

[Guarino1994] Externally Dependent Moment (Also called "Qua individual)
[SOWA1999] Prehension

Direct Supertypes
Relationship

Associations
e has facet : Facet [1] Subsets: has type:Type

The facet that an entity assumes when it is the facet of an entity.
[FIBO] (for roles) playsRole

e has entity : Identifiable Entity [1] Redefines: categorizes:Thing

The entity having a facet (including roles and phases).
[FIBO] (for roles) isPlayedBy

84 Semantic Modeling for Information Federation (SMIF) 0.9

9.5 Class Phase

A phase (or state) is a static characteristic of something that exists for limited time(s). Something takes on or looses a
phase as a result of some event. E,g, Teenager, living, closed invoice.
A Phase is a situation in that there is a situation coincident with each phase.

[Guizzardi] (Phased-Sortal): Let PS be a universal and let S be a

substance sortal specialized (restricted by) PS. Now, let extw(~PS) = extw(S) \ extw(PS)
be the complement of the extension of PS in world w. In this formula, the

symbol \ represents the set theoretical operation of set difference. The

universal PS is a phased-sortal iff for all worlds w €W, there isa w [€W such

that extw(PS) N extw{~PS) # &

Direct Supertypes
Facet, Situation Type

9.6 Class Role

Arole is a facet type that defines a specific purpose or behavior of a class of things. E.g. teacher, policeman, or
employer.
[FIBO] Role. Note that partyInRole or thingInRole are implied by classification of a thing.

Direct Supertypes

Facet

Semantic Modeling for Information Federation (SMIF) 0.9

85

10SMIF Conceptual Model::ldentifiers

Terms and identifiers provide for signs for (ways to identify) anything.

10.1 Diagram: Identifiers

package Idertifiers| 5] Idertifiers y
«Sufficent»
| Identifiable Entity I*‘m
1>
a,m{t preferred for | 0.1 idertifies 1 fredefines
A {subsets identifies} «Suffident» identifies}
| Prefered ificati
i ithil Identification Identification
unique within |1
{subsets defined in} Value
«Sufficient»|
Idertifier in Nermespece) {stbsets Iderttfiec by} «Sufficient Narring
has preferred | O..1 identified by| *
«\Value»
Identifier

soopes idertifier

{subsets defines}

«Suffident» |,
«\Value»
«\Value» g
Unique Iderttifier Text Identifier
aitributes
+aue: Text
T 7aY
«value» «\alue»| +has name
«Intersection» N ”
Unique Text Identifier 7~ ¢
T identified by}
«\Vaue» «Aue»
Technical Identifier «Intersection»
lr Term
«\aue»
IR Identifier

j- Identifiers

An identifier that can be represented as text. The text is in the "value" property.

[IDEAS] Sign: An Individual that signifies a Thing.

86 Semantic Modeling for Information Federation (SMIF) 0.9

10.2 Association Identification

Relationship defining an identifier for an entity.
[IDEAS] namedBy: A couple that asserts that a Name describes a Thing.

[ISO 1087] Designation

Association Ends
e identifies : Identifiable Entity [1] Redefines: categorizes: Thing
The entity an identifier identifies.

[FIBO] identifies: is the relationship between something and that which provides a unique reference for it

[ISO 1087] designator: representation of a concept (3.2.1) by a sign which
denotes it

s identified by : Identifier [*] Redefines: categorizes: Thing

An identifier for an <Entity>.
[FIBO] hasDenotation

10.3Class Identifier <<Value>>

An identifier is any value that is used to distinguish an entity from other entities. Note that any identifier may be
contextualized by one or more context, including language context. Identifiers are a “sign” for an identity where identity
is an abstraction of individuality that is the basis for identifiers.

[IDEAS] Name: A Representation that identifies a Thing.

[FIBO] Identifier

[CL] Term: expression which denotes an individual, consisting of either a name or, recursively, a function term applied
to a sequence of arguments, which are themselves terms

Direct Supertypes

Value

Associations
/" <<Sufficient>> identifies : Identifiable Entity [1]

through association: Identification
The entity an identifier identifies.

[FIBO] identifies: is the relationship between something and that which provides a unique reference for it

[ISO 1087] designator: representation of a concept (3.2.1) by a sign which
denotes it

Semantic Modeling for Information Federation (SMIF) 0.9 87

10.4 Association Identifier in Namespace
Relationship defining the namespace within which a unique identifier is defined and unique.

[ISO 1087] monosemy: relation between designations (3.4.1) and concepts (3.2.1) in a given language in which one
designation only relates to one concept

Direct Supertypes

Definition

Association Ends

/ unique within : Namespace [1]

The namespace in which an identifier is defined and has a unique value.
[FUML] memberNamespace

v scopes identifier : Unique Identifier [*]

An Identifier defined within the scope of a namespace.
[FUML] member

10.5Class IRl Identifier <<Value>>
A IRI/URI Identifier for an entity, as defined in [RFC3987].

[FIBO] anyURI

Direct Supertypes

Technical Identifier

10.6 Class Name <<Value>>

A word or set of words by which a person, animal, place, or thing is known, addressed, or referred to. Names are not
necessarily unique.

[IDEAS] Name: A Representation that identifies a Thing.

[CL] Discourse Name

Direct Supertypes
Text Identifier

Associations

e names : Identifiable Entity [1..*] Redefines: identifies:Identifiable Entity
through association: Naming

An entity named by a name.

10.7 Class Namespace

A namespace is a context that provides a way to make identifiers unique and identify exactly one entity. For example, the
Virginia driver's license division provides unique driver's license numbers.

88 Semantic Modeling for Information Federation (SMIF) 0.9

Similar to [[DEAS] UniqueNamingScheme: A NamingScheme where different Names will not contain tokens of the
same Representation Type.
Note: SMIF identifiers are not instances of their namespace.

[FIBO] IdentificationScheme: system for allocating identifiers to objects
[ISO 1087] terminology 1: set of designations (3.4.1) belonging to one special language (3.1.3)
[FUML] Namespace

[CL] Vocabulary
Direct Supertypes

Context
Associations

/ <<Sufficient>> scopes identifier : Unique Identifier [*] Subsets: defines:Thing
through association: Identifier in Namespace

An Identifier defined within the scope of a namespace.
[FUML] member

10.8 Association Naming

Relationship defining a human meaningfully name for an entity.

Direct Supertypes

Identification

Association Ends
/s names : Identifiable Entity [1..*] Subsets: defines:Thing

An entity named by a name.

/s has name : Name [*] Subsets: defines:Thing
A human meaningful name for an entity.
[FIBO] hasName: that by which some thing is known; may apply to anything

[OWL] rdfs:label

10.9 Association Prefered Identification
Relationship defining the preferred identifier for an entity.

[ISO 1087] preferred term: term (3.4.3) rated according to the scale of the term acceptability rating (3.4.14) as the
primary term for a given concept (3.2.1)

Direct Supertypes
Identification
Association Ends
e has preferred : Identifier [0..1] Subsets: defines:Thing

Default identifier to use for an entity.
Where multiple identifiers are preferred in differing context any method for selecting the most preferred identifier is

Semantic Modeling for Information Federation (SMIF) 0.9

implementation specific and not specified by this standard.
[FUML] NamedElement.name: Note: An Identifier that is <preferred for> an entity is equivalent to the name of a named
element.

e preferred for : Identifiable Entity [0..1] Subsets: defines:Thing
The entity an identifier is preferred for.

10.10Class Technical Identifier <<Value>>

A technical identifier is defined within a technical system, information structure or system of systems for references and
identity within that system or information element. Such identifiers may have no meaning outside of that system.

Typical technical identifiers include inter document "refs", record numbers, etc. The system should be referenced as the
namespace.

Direct Supertypes
Unique Text Identifier

10.11 Class Term <<Value>><<Intersection>>

A word, phrase or name used by stakeholders to uniquely identify entities.

[ISO 1087] term: verbal designation of a general concept in a specific subject field.

Direct Supertypes

Name, Unique Text Identifier

10.12Class Text Identifier <<Value>>

A code or other simple value that can be represented as text, identifying something that may or may not be unique.
Simple identifiers may be codes, names, numbers or compound values.
[NIEM] IdentificationType (IdentificationID=value)

Direct Supertypes
Identifier

Attributes

2 value : Text
Text value of an identifier

10.13Class Unique Identifier <<Value>>

A unique identifier is an entity used to uniquely identify something. The identified thing is referenced by what the
identifier <identifies>.

Identifiers are defined and <unique within> a lexical scope as its namespace.

Multiple identifiers may use the same word or text value (or other forms of values) in differing <unique within>
namespaces such that the same word may have different meanings in different context.

An entity may have any number of identifiers.

Direct Supertypes
Identifier

90 Semantic Modeling for Information Federation (SMIF) 0.9

Associations

/ <<Sufficient>> unique within : Namespace [1] Subsets: defined in:Lexical Scope
through association: Identifier in Namespace

The namespace in which an identifier is defined and has a unique value.
[FUML] memberNamespace

10.14Class Unique Text Identifier <<Value>><<Intersection>>

An <Identifier> that is represented using text. e.g. a "word", "phrase" or "name".

Direct Supertypes
Text Identifier, Unique Identifier

Semantic Modeling for Information Federation (SMIF) 0.9

91

11 SMIF Conceptual Model::Kernel

The kernel subsets the SMIF classes. The diagrams in this package illustrate the concrete classes that are used to define
the SMIF language.

Note that shaded classes are not instantiated in the kernel and may be "flattened". Specifications for each class and
association are defined in the corresponding package for that concept.

11.1 Diagram: Kernel Associations

package Kemdl[[&] Kemel Assodiations y
«Suffident»
BExtent of Type -i(ztego,rjmi Thing ‘
{redefines contextualizes} +oinds{ 1 T
«Sufficdent» |
’ Identifiable Entity ‘
{subsets in context of}
+bound to| 1
q.x | EstPe Bound Indivicud T
Type +property of "
* 0.1 Properties Relationship megated within™ — ¢
+is of type Bound Subject : —
{chain = constrained +holds within| *
by, is of type} Negation
Assertion
+has property | * “+boundin * +has binding * * |+negates +assarts|*
’ EliityType‘ ’ Property Type Property Binding ‘ ’ Proposition
+bound by| 1 +has binding| * Y
{redefines has type} {redefines categorizes}
Owned Property Type \ 1 *
- Jsuibsets bound by} {reckfires hes birdingy | O vned Property Binding
{subsets states) *
redefines has {Sts;,‘ltt:;ets
property} redefines has
binding}
{redefines property of, | 1 {redefines boundto, |1
redefines stated by} «Suffident» redefines stated by}
’ Property Oaner Type ‘ «Restriction» 1 [Property Owner }—/\—
{redefines Catm@;‘
- P
{redefines
categorizes}

k. Kernel Associations

92 Semantic Modeling for Information Federation (SMIF) 0.9

11.2 Diagram: Kernel Identifiers

package Kema[KemeHdmtiﬁasy

«Sufficent»
| Identifiable Entity I =
1.*
preferred for | 0..1 identifies| 1 fredefines
{subsets idertifies} «Suffident» identifies}
| Gorsed|
L\ . .
Prefered Identification Identification
Value
Narring
[Memospeco |
unique within |1
«Suffident» | {subsets defined in} {subsets identified by} «Suffident»
hes preferred | 0..1 identified by| *
«Vaue»
Identifier in Namespace Identifier
«Suffident» | {subsets defines} Vaue»
soopes identifier | * Text Identifier
«\Value» value : Text
Unique Identifier
{subsets
identified by}
+has namg *
«\Value» «\aue»
«Intersection» Name
Unique Text Identifier

«Vaue» «aue»
Technical Identifier «Intersection»
T Term
«\Value»
IR Identifier
. Kernel Identifiers

An identifier that can be represented as text. The text is in the "value" property.

[IDEAS] Sign: An Individual that signifies a Thing.

Semantic Modeling for Information Federation (SMIF) 0.9

93

11.3 Diagram: Kernel Lexical Scope

package Kemel[[Kemel Lexical Soopey
Thing Identifiable Entity
* * +defines
€ o {subsets contextudizes} ‘r
teets defines) «Suffident» - +Referenced soope
1
T Soope of Reference

Staterrent Definition o - Iby

Namespace +references Lexical Reference
{subsets T
aefiredin, Soope Reference
Erian ==
within}

{subsets in context of}
tstated byl 0.1 1 § +definedin 1§ +extends scope
Lexical Scope
«documentation»
Lexical soope represents nodel content (the lexical structure of the
nodel) that then models an area of concem. Allexical socope may PV
define nodel elements representing anything. It i
[CL] Text: Atext is aset, list, or bag of phrases. A piece of text 3 !
shall optionally be idertified by a rere. Unique Text Identifier
[OVWL] Patential soope of a RDF graph defined by <defines> o
| i - i -Horefix of Prefix
[Tee || Swen || P |
. 11 fsubsets identifiesy
{subsets identified by},
+has prefix| 0..1
«\Value»
1 {redefines defined in} Prefix

m. Kernel Lexical Scope

94 Semantic Modeling for Information Federation (SMIF) 0.9

11.4 Diagram: Kernel Metadata

package Kemdl[[£] Kemel Mamatay
Identifiable Entity
Record +retadata abouf *
AN «8uffident» | {subsets about}
«Anndtation Property»
M : . +has metadata
{subsets has . i
N Metadata relationship
record}
Definition
+Hext definition : Text
+extemal reference : IR Identifier Stat ¢
+exdtema tem: Term
+summary desaription : Text
n. Kernel Metadata
11.5Diagram: Kernel Properties
package Kemel[55| Kemel Pnoperti%y
«Suffident»
Bxent of Type +categorizes| Thing
P
{redefines contextualizes) +oinds| 1 7 +oontextusizes| *
«Suffident» «Suffident»
{subsets in context of} Bxtent of Context
1. |HESHP o Bound Individel
e 0.1 .
* . Properties Relationship N
+s of type B Subjedt +n context of
{chein = corstrained Context
by, i:dtype}'a L4‘
+halds within| *
«Suffident»
Assertion
+has property | * +bound in * +has binding * «Suffident»
’ Ell:ityType‘ ’ Property Type ’ ’ Property Binding ’ +asserts|*
Ay T1 B A a * Proposition
+bound by +has binding
{redefines hes type} {redefipes categorizes}
T Situation
{redefines l
categorizes}
«Intersection»
Actudl Situation
Characteristic Binding

o. Kernel Properties

Semantic Modeling for Information Federation (SMIF) 0.9 95

11.6 Diagram: Kernel Rules Summary

package Kand[Kemel Rjess_rrrrayy

+oonstrains| Identifiable Entity

— | +asserts Assertion
2 e Constrai Proposition

«Sufficient»
+hdds within| *

[o=]

7 ﬁstbsdsoa’stra’ned by}
| Type Constraint |
I
Muitiplicity Constraint
+Hininumnumber : Integer [O..1] S S
+reximum nurrber : Integer [0..1] Generalization Constraint
+at once : Bodlean =true redefi . Covering Constraint
+s sufficent : Bodean nes : Boolean
+has covering| ™
+hes muitiplicity * * [+respect of - itin |« o
subsets constrained by} +has speddization ¢ reined by}
+with respect to | * 1 |+has general
Type .
-+Huitiplicity of fi
plicity 1 {redefines constrains}
{redefines constrains} 1
-Hs covered by
* -+has supertype
{chein = consirained +oonstrains _
by, hes spediid: 1 {redefines constrains}
+s o type|1 Hs of type|*
chain = constrained by, is of type}
Property Type
“+oonstrains| 1
{redefines constrains}
{subsets constrained by} | «
| Property Constraint
“+Horoperties of typel * T
Property Type Constraint

+prerequisite type : Bodean

p. Kernel Rules Summary
This diagram shown a summary of the primary rules.

96 Semantic Modeling for Information Federation (SMIF) 0.9

11.7 Diagram: Kernel Top Level

package Kemel[[Kemd Top Level y
«Sufficent»
Thing +categorizes
* {redefines contextudizes}
«Suffident»
“+oontextudizes Bxtent of Context
" Bxdent of Type
U
| Idertifiable Entity |
Te | Gt | | = - :—asserts
AN N - Assertion
+negates
Negation
* | +hddswithin
+negated within Context 1.-
- T +Hn context of
L +hes
Situation Type 1 e
{subsets in context of}

Unshaded dasses are for

oontext and nat of imrediate

concem.

q. Kernel Top Level
Diagram showing summary of top level classes and significant subtypes.
Semantic Modeling for Information Federation (SMIF) 0.9 97

11.8 Diagram: Kernel Types

“+categorizes
«Sufficent»
{redefines contextudizes}

BExtent of Type

{chain = constrained by, has spedific;

«uffident» «Sufficent»

+hdds within M_

{redefines categorizes}

Value Type

Owned Property Type |

98

r. Kernel Types

Semantic Modeling for Information Federation (SMIF) 0.9

11.9 Diagram: Kernel Values

package Kemd [[Kemd Vdu&ey
Identifiable Entity Thing
«Disjant With»
Type Value
{r nes categonizes) «BEquivalent To»
{subsets has type}
VEIRLEE 1.* «\Vaue»
Data Value
AN
«Value» T
TRUE : Boolean Vaue»
dltributes
«\Value» +value text : String [0..1]
FALSE : Boolean T
| |
«\Vaue» «\Value» «\Value»
Text Boolean Neasuremernt Value
«Equivalent Toy, NaEue»
Numeric
«prinitive» lr
«\Vaue»
Boolean N
«\Value» «Value»
Integer Real Nurmber
«Equivaent To,
«prirmitive» «primitive»
Integer Real

Semantic Modeling for Information Federation (SMIF) 0.9

S.

Kernel Values

99

12SMIF Conceptual Model::Lexical Scope

Lexical scope defines the structure of models and the ownership of model elements.

12.1 Diagram: Lexical Scope

package Lexical Soopel [£] Lexical Swpey

| Thing |<)— Identifiable Entity
* * +defines
& {subsets contextualizes} lr
? «Suffident» +Referenced
1
T Saoope of Referernce

Definiti

Staterrent > on * | -+eferenced by
Namespace +references Lexical Reference

{subsets T
aefinedin, Soope Reference
Srian =
within}

{subsets in context of}

stated iyl 0.1 1 § +definedin 1§ -+extends soope
Lexical Scope

«\Vaue»
«Intersection»

Unique Text Identifier

«Suffident»

|+pneﬁx of Prefix

«Irtersedil:n» Type | | Situation |

|angaqu| |m@andqp

. |1 {subsets identifies}

{subsets identified by},
+has prefix | 0..1
«\Vaue»

|comepua| Package| 1 [{redsfines defired ir}

Prefix

t.

12.2Class Conceptual Package

A model of a real or possible world as conceived by the model authors.

Direct Supertypes
Package

100

Lexical Scope

Semantic Modeling for Information Federation (SMIF) 0.9

12.3 Association Definition

Relationship defining the set of elements defined within a lexical scope.
[OWL] RDF Graph

Direct Supertypes
Extent of Context

Association Ends
" defines : Thing [*] Subsets: defined in:Lexical Scope
A model element defined within a lexical scope.
Definition within a scope does not assert everything within a scope but the lexical scope may be independently asserted,

thus asserting what it defines.
[FUML] ownedElement, ownedMember

»”" defined in : Lexical Scope [1] Subsets: defined in:Lexical Scope

Lexical scope defining model elements.
[UML]owner

12.4Class Include

An "Include" is an external scope that is visible and asserted by the owning lexical scope.

[FUML] Packagelmport

[CL] Importation: An importation contains a name. The intention is that the name identifies a piece of Common Logic
content represented externally to the text, and the importation re-asserts that content in the text.

Direct Supertypes

Lexical Reference

12.5Class Lexical Reference

A Lexical Reference is an external scope that is visible to but not necessarily asserted by the owning lexical scope.

Direct Supertypes

Context

Associations

e Referenced scope : Context [1]
through association: Scope of Reference
A referenced context, potentially in another model, that provides visibility to the elements in that context.
[FUML] importedPackage
[OWL] directlylmports (implies "Include")

*" extends scope : Lexical Scope [1]
through association: Scope Reference

A lexical scope that is extended by a lexical reference.
[FUML] importingNamespace

Semantic Modeling for Information Federation (SMIF) 0.9 101

12.6 Class Lexical Scope

Lexical scope represents model content (the lexical structure of the model) that then models an area of concern. A lexical
scope may define model elements representing anything.

[CL] Text: A text is a set, list, or bag of phrases. A piece of text shall optionally be identified by a name.

[OWL] Potential scope of a RDF graph defined by <defines>

Direct Supertypes
Namespace

Associations

4 defines : Thing [*] Subsets: contextualizes:Thing
through association: Definition
A model element defined within a lexical scope.
Definition within a scope does not assert everything within a scope but the lexical scope may be independently asserted,
thus asserting what it defines.
[FUML] ownedElement, ownedMember

" references : Lexical Reference [*]
through association: Scope Reference

A reference providing visibility of a lexical scope to an internal or external context.

" states : Thing [*] Subsets: defines:Thing asserts:Proposition
through association: Statement

<states> combines <defines> with <has assertion> to both define and assert an element within a lexical scope.
<states> provides a more "structural” organization of concepts that are both defined and asserted in the same structure.

<states> is a convenience for the common case where assertion and lexical containment are combined.

12.7 Class Logical Package

A model of information about systems independent of technical representation.

Direct Supertypes
Package

12.8 Class Mapping Package
A model defining relationships between other models.

Direct Supertypes
Package

12.9Class Model

A root package. A model has no owner and may be directly referenced as an independent information resource. A model
is defined in it's self.

Direct Supertypes

102 Semantic Modeling for Information Federation (SMIF) 0.9

Package

Associations
v : Thing [*] Subsets: defines:Thing asserts:Proposition
4 : Thing [*] Subsets: defines:Thing asserts:Proposition

12.10Class Package

A model element that provides a definitional scope for other model elements. A package may be represented as a
"graph".

[ISO 1087] concept system: system of concepts set of concepts (3.2.1) structured according to the
relations among them

[FUML] Package. FUML ownedMember corresponds with SMIF <defines>. FUML "nestedPackage" corresponds with
"defines" where the element defined is a package.

[CL] Module: A module consists of a name, an optional set of names called the exclusion set, and a text called the body
text.

Direct Supertypes
Lexical Scope

Associations

e <<Sufficient>> has prefix : Prefix [0..1] Subsets: identified by:Identifier
through association: Prefix

An abbreviation that can be used to identify a package.

12.11 Class Physical Package

A physical, technology specific, data schema representing information about a real or possible world.

Direct Supertypes
Package

12.12 Association Prefix
Relationship defining the prefix for a package.
Direct Supertypes

Identification
Association Ends
/ has prefix : Prefix [0..1] Subsets: identified by:Identifier
An abbreviation that can be used to identify a package.

v prefix of : Package [1] Subsets: identified by:I1dentifier

An abbreviation for a package.

Semantic Modeling for Information Federation (SMIF) 0.9 103

12.13Class Prefix <<Value>>

A technical abbreviation for a package.

Direct Supertypes

Unique Text Identifier

Associations

/s <<Sufficient>> prefix of : Package [1] Subsets: identifies:Identifiable Entity
through association: Prefix

An abbreviation for a package.

12.14Association Scope of Reference

Relationship defining internal or external context that are referenced by a lexical scope using a lexical reference.

Association Ends
e Referenced scope : Context [1] Subsets: identifies:Identifiable Entity

A referenced context, potentially in another model, that provides visibility to the elements in that context.
[FUML] importedPackage
[OWL] directlylmports (implies "Include")

e referenced by : Lexical Reference [*] Subsets: identifies:Identifiable Entity

References to a context.

12.15Association Scope Reference
Relationship defining references for a scope.

Association Ends
" references : Lexical Reference [*] Subsets: identifies:Identifiable Entity

A reference providing visibility of a lexical scope to an internal or external context.

» extends scope : Lexical Scope [1] Subsets: identifies:Identifiable Entity
A lexical scope that is extended by a lexical reference.
[FUML] importingNamespace

12.16 Association Statement

Relationship defining the set of elements defined within and asserted by a lexical scope.

Direct Supertypes

Definition

Association Ends
" states : Thing [*] Subsets: identifies:Identifiable Entity

<states> combines <defines> with <has assertion> to both define and assert an element within a lexical scope.
<states> provides a more "structural" organization of concepts that are both defined and asserted in the same structure.

<states> is a convenience for the common case where assertion and lexical containment are combined.

104 Semantic Modeling for Information Federation (SMIF) 0.9

v stated by : Lexical Scope [0..1] Subsets: identifies:Identifiable Entity
<stated by> is a lexical scope that both defines and asserts a model element.

Semantic Modeling for Information Federation (SMIF) 0.9 105

13SMIF Conceptual Model::Mapping

Mapping rules define how data represents concepts or how different data representations are related.

13.1Diagram: Facades

package Meppind [£] Facadsy

Record Type

Caomputed Facade

+oul()

u. Facades

106 Semantic Modeling for Information Federation (SMIF) 0.9

13.2Diagram: Mapping Rules

package Meppindl] Vepping Ries]]
«enueration»

Assertion Strength Conditional Rule
Global

Local

{redefines constrains,
redefines stated by} -
Metch Rues h s
strength : Assertion Strength
el Pattemn Variables
+ooncrete +reference
mepping| 0.1 mepping (0.1
Concrete Pattem Body Reference Pattem Body
+has mep rue 1 1
{subsets constrained +oonarete| {subsets owns +reference | {subsets omns
« | by, subsets states} focus | variabie} focus | variable}
Match Rule Pattern Variable Representation Rule
a +qualification : Variable Qualification [1] | +owns varisble +mep all : Boodlean
“+ooerce : Bodlean +explidit : Bodean -
+matchto Q.1 +match from[0.1 +rooncept e “represents rue!
Reference Mep End
Type 1.7 Represented Concept
“+represented type
+reference 1 +ooncrete epresented by Representation
1 *
Match End
See Also
+Hrepsto *
Pattomn Varictle
+meps variable+qualification : Variable Qudification [1] Facades Pattems
. 1 +explict : Bodean

v. Mapping Rules

13.3Class Computed Facade

A facade that is computed by calling external methods.

Direct Supertypes

Facade

Operations

© public push ()
An operation called to evoke the behavior associated with a new facade element being created or modified. Push asserts
the more concrete type based on a reference type.

< public pull ()

Semantic Modeling for Information Federation (SMIF) 0.9 107

An operation called to evoke the behavior associated with a facade representing existing elements. Pull asserts the
reference type based on a more concrete type.

13.4 Association Concrete Map End
Relationship to the more concrete end of a match rule.

Association Ends
" concrete end : Match End [1] Subsets: identifies:Identifiable Entity
One end of a mapping, to be used for more concrete end.

" match from : Match Rule [0..1] Subsets: identifies:Identifiable Entity

Mapping rule owning a "concrete" end.

13.5 Association Concrete Pattern Body
Relationship between a mapping and a pattern of the more concrete concepts to be mapped.

Association Ends
" concrete focus : Pattern Variable [1] Subsets: identifies:Identifiable Entity

The variable or variables that form the basis for the portion of the pattern for the more concrete (physical)
model. The concrete portion of the pattern is derived from the transitive closure of all variables reachable from the
pattern variable via characteristics, associations or relationships.

When a pattern matching the set of concrete variables is created or altered the mapping "fires" and the reference pattern
is asserted.
The qualification of the referenced variable is constrained to be

nn

select".

" concrete mapping : Mapping [0..1] Subsets: identifies:Identifiable Entity

Mapping for which a more concrete pattern is defined.

13.6Class Facade

An intermediary data type used to hold common mappings. Facades may be computed and/or have mapping rules.

Direct Supertypes
Record Type

13.7 Association Map Rule Type Assertion
Relationship defining more concrete types that shall be asserted for an end of a match rule.
Association Ends

e asserted type : Type [*] Subsets: identifies:Identifiable Entity

Type that will be asserted for the end that is more concrete than the defined type of a property or relationship.
e.g. a unit type.

e asserted by : Match End [*] Subsets: identifies:Identifiable Entity
Map rule and that asserts a type

108 Semantic Modeling for Information Federation (SMIF) 0.9

13.8 Association Mapped variable

Relationship defining the property that is the source or target of a mapping

Association Ends
/ maps variable : Pattern Variable [1] Subsets: identifies:Identifiable Entity

Variable that defines a set of elements to map to the other side of the mapping rule. The set of elements shall be
those bound to the property on evaluation of the mapping.

e maps to : Match End [*] Subsets: identifies:Identifiable Entity
Map rule end for a property

13.9Class Mapping

A mapping is a rule based on a pattern that defines how different representations of the same things correspond. There
are two "sub patterns", defined by the concrete and reference variables and other variables reachable from them via
characteristics, associations and relationships. These sub-patterns are matched (made to correspond) using "Match
Rules"

Patterns define a set of related elements to be mapped based on two distinguished variables, the "concrete body" and the
"reference body".

Types in a "concrete" body may be defined to be a representation (data about) a concept in a "reference" pattern.

Match rules define how elements in each of the sub-patterns are mapped, bidirectionally.

A mapping utilizing more specific types subsumes maps for more general types.

Note that the roles of "concrete" and "reference” may or may not reflect different levels of abstraction and in some cases
the choice may be arbitrary.

Direct Supertypes
Pattern, Rule
Attributes
< strength : Assertion Strength
Strength defines what will cause a rule to be considered for being asserted (firing).
Associations

»” concrete focus : Pattern Variable [1] Subsets: owns variable:Pattern Variable
through association: Concrete Pattern Body

The variable or variables that form the basis for the portion of the pattern for the more concrete (physical)
model. The concrete portion of the pattern is derived from the transitive closure of all variables reachable from the
pattern variable via characteristics, associations or relationships.

When a pattern matching the set of concrete variables is created or altered the mapping "fires" and the reference pattern
is asserted.
The qualification of the referenced variable is constrained to be

nn

select".

" has map rule : Match Rule [] Subsets: constrained by:Rule states:Thing
through association: Match Rules

Map rule that is asserted by a mapping.

" reference focus : Pattern Variable [1] Subsets: owns variable:Pattern Variable
through association: Reference Pattern Body

The variable or variables that form the basis for the portion of the pattern for the more abstract/reference
(conceptual) model. The reference portion of the pattern is derived from the transitive closure of all variables reachable

Semantic Modeling for Information Federation (SMIF) 0.9 109

from the pattern variable via characteristics, associations or relationships.

When a pattern matching the set of reference variables is created or altered the mapping "fires" and the concrete pattern
is asserted.

The qualification of the referenced variable is constrained to be

nn

select".

13.10Class Match End

One end of a mapping from one thing to another that may be qualified with a condition.

The set of elements to be mapped is the union of the sets of all mapped types and mapped variables that conform to the
condition.

Match rules are constrained to apply to only conforming types or types that represent the mapped ends (as specified by a
representation rule).

Representation rules applied to a supertype apply to a subtype unless a more specific representation rule is specified for
the corresponding types.

Direct Supertypes
Computed, Conditional
Associations

e asserted type : Type [*]
through association: Map Rule Type Assertion

Type that will be asserted for the end that is more concrete than the defined type of a property or relationship.
e.g. a unit type.

v maps variable : Pattern Variable [1]
through association: Mapped variable
Variable that defines a set of elements to map to the other side of the mapping rule. The set of elements shall be
those bound to the property on evaluation of the mapping.

13.11 Class Match Rule

A rule that the 2 ends represent the same things or information about a thing.
Redundant mappings are ignored and identity is preserved across all mappings.

Direct Supertypes
Rule

Attributes

© coerce : Boolean

Where <coerce> has a value of TRUE a map rule will be evaluated even if the <reference end> is not type compatible
with the <concrete end> type.

Where <coerce> is FALSE or unstated a map rule will be evaluated only if the <reference end> is type compatible with
the <concrete end> type.

Type compatible shall be defined as one of: Being the same type, <concrete end> being a subtype of <reference end> (as
defined by a type generalization rule), <concrete end> being a representation of <reference end> (as defined by a
representation rule).

Representation rules applied to a supertype apply to a subtype.

110 Semantic Modeling for Information Federation (SMIF) 0.9

Associations

" concrete end : Match End [1]
through association: Concrete Map End

One end of a mapping, to be used for more concrete end.

" reference end : Match End [1]
through association: Reference Map End

One end of a match rule, to be used for more abstract end.

v map rule of : Mapping [1] Redefines: constrains:Identifiable Entity stated by:Lexical Scope
through association: Match Rules

Mapping containing a map rule.

13.12Association Reference Map End

Relationship to the reference end of a match rule.

Association Ends
" reference end : Match End [1] Redefines: constrains: Identifiable Entity stated by: Lexical Scope
One end of a match rule, to be used for more abstract end.

" match to : Match Rule [0..1] Redefines: constrains: Identifiable Entity stated by: Lexical Scope

Mapping rule owning a reference" end.

13.13Association Reference Pattern Body

Relationship between a mapping and a pattern of the more abstract concepts to be mapped.

Association Ends
" reference focus : Pattern Variable [1] Redefines: constrains: Identifiable Entity stated by: Lexical Scope

The variable or variables that form the basis for the portion of the pattern for the more abstract/reference
(conceptual) model. The reference portion of the pattern is derived from the transitive closure of all variables reachable
from the pattern variable via characteristics, associations or relationships.

When a pattern matching the set of reference variables is created or altered the mapping "fires" and the concrete pattern
is asserted.
The qualification of the referenced variable is constrained to be

nn

select".

" reference mapping : Mapping [0..1] Redefines: constrains: Identifiable Entity stated by: Lexical Scope

Mapping for which a more abstract pattern is defined.

13.14 Association Representation

More concrete type that represents information about the represented concept of a representation rule.

Association Ends
e represented by : Type [1] Redefines: constrains: Identifiable Entity stated by: Lexical Scope
The representation of a concept in a more specific form

e represents rule : Representation Rule Redefines: constrains: Identifiable Entity stated by: Lexical Scope

Semantic Modeling for Information Federation (SMIF) 0.9 1M1

Rule defining a representation of a type.

13.15Class Representation Rule

A representation rule states that the <represented type> has a representation defined by the <represented by> type.
Representation rules are used to filter Map Rules such that only represented concepts may be mapped.
A representation is usually complimented with one or more mapping rules.

Direct Supertypes
Conditional Rule

Attributes

' map all : Boolean

Specifies a direct mapping between instances of the types in both directions.

<map all> is equivalent to a mapping with a rule mapping properties of each type but is lower precedence than other
mappings - if types have a more specific map it will apply first.

Associations
e represented by : Type [1]
through association: Representation
The representation of a concept in a more specific form

e represented type : Type [1..%]
through association: Represented Concept

A more general or abstract concept that is being represented.

13.16 Association Represented Concept

More abstract type that is <represented by> a more concrete type of a representation rule.
Association Ends

e represented type : Type [1..¥]
A more general or abstract concept that is being represented.

e concept rule : Representation Rule
Rule defining a concept that is represented by another, more concrete, concept.

13.16.1 Enumeration Assertion Strength

Rule strength defines what will cause a rule to be considered for being asserted (firing).

package SMIF Conceptual Model: :Mapping
public enum Assertion Strength
{Global, Local}

Literals
< Global

The rule will be in effect globally.

112 Semantic Modeling for Information Federation (SMIF) 0.9

© Local
The rule will only be in effect if required to fulfill another rule.

Known other enumerations
Enumeration Assertion Strength

Semantic Modeling for Information Federation (SMIF) 0.9 113

14SMIF Conceptual Model::Metadata

Metadata defines data about model elements (their source, definition or trust), which can be differentiated from model
elements about the subject domain.

14.1 Diagram: Metadata

paﬂagewbtajata[wbtamtay

«Suffident» «SUfficdient»
resutedin| |gentifiable Entity | mede staterent Source of Infametion
subsets metadata about] *
€ } 1. {subsets metadata about}
Assertion Staterrent
«Suffident» «Suffident»
Reoord of an Ertity about +defines
* " {redefines metadata abouty
netadata about *
«Sufficent» | {subsets about}
has record | *
Record
Definition Relationship
Metadata relationship
«Annatation Rraperty»
has metadata
* {subsets has record}
«Annatation Property»
{subsets has nmetadata}
wes stated in | *
Staterment Definition «Annotation Property»
+text defirition : Text aefiredby
+statement date and time : Value Type -
‘o - Vaue T me b +externdal reference : IR Identifier {subsets has
-Hrcns%on icL;'e Vz)aﬁ: Type +edemd temn: Term rretadata)
. +sumary desaiption : Text
«Annatation Property»
A | Enti «Facet Of» «Rde» has authoritative source
- Information Source | «
{subsets has netadatal}

w. Metadata

114 Semantic Modeling for Information Federation (SMIF) 0.9

14.2 Association Assertion Statement

Relationship defining the original statement, speech act or information artifact that asserted something in a model.

Direct Supertypes
Metadata relationship

Association Ends
e was stated in : Statement [*]

Metadata representing the speech act, document or other record where a statement captured in a model was

made.
[OWL] rdfs:isDefinedBy

e resulted in : Identifiable Entity

Statement made in a statement by an information source.

14.3 Class Definition

An informal or natural language definition of a something and potentially a reference to external definitions.
A Definition may be in the context of a natural language to scope the language it is expressed in.

[ISO 1087] definition: representation of a concept (3.2.1) by a descriptive statement which serves to differentiate it from
related concepts

[FUML] Comment (where body corresponds with "text definition").

Direct Supertypes
Metadata

Attributes

' text definition : Text
Text describing a something in natural language. The language may be indicated by a context of the definition.
[OWL] rdfs:comment

< external reference : IRI Identifier
A reference to an external information resource that further defines something,.
[FIBO] ReferenceDOcument

© external term : Term
Specific term in an external resource that further defines something.

< summary description : Text
A short description of something.

Associations

e <<Annotation Property>> defines : Identifiable Entity [1] Redefines: metadata about:Identifiable Entity
through association: Definition Relationship

Some thing described by a definition.
[FIBO] defines
[FUML]annotatedElement

Semantic Modeling for Information Federation (SMIF) 0.9 115

14.4 Association Definition Relationship

Relationship between a thing and its definitions.

Direct Supertypes
Metadata relationship

Association Ends
/s defines : Identifiable Entity [1] Redefines: metadata about: Identifiable Entity

Some thing described by a definition.
[FIBO] defines
[FUML]JannotatedElement

/s defined by : Definition [*] Redefines: metadata about: Identifiable Entity
An informal description of something.

[FIBO] hasDefinition

[UML] comment

[FUML] ownedComment

14.5Class Information Source <<Role>>

Metadata defining the origin or provenance of a set of statements in a model or data.
Note that the source could be a human, an organization, a mapping or other automated processes.

Direct Supertypes
Actual Entity, Metadata

Associations
e <<Annotation Property>> made statement : Identifiable Entity [1..*] Subsets: metadata about:Identifiable

Entity
through association: Source of Information

Metadata representing statements made by an authoritative source.
Sources may be people, organizations, documents, information systems, etc.

14.6 Class Metadata

Information about the source, provenance or origin of information. Metadata may be a managed entity, providing for
provenance.
[NIEM] MetadataType

Direct Supertypes
Record

Associations

v <<Annotation Property>> metadata about : Identifiable Entity [*¥] Subsets: about:Identifiable Entity
through association: Metadata relationship

The subject of metadata, the entity described by the metadata.
[OWL] annotationSubject of Annotation Assertion

116 Semantic Modeling for Information Federation (SMIF) 0.9

14.7 Association Metadata relationship

Relationship between something and metadata about that thing; data about data.
[OWL] AnnotationAssertion

Association Ends
/s metadata about : Identifiable Entity [*] Subsets: about:Identifiable Entity

The subject of metadata, the entity described by the metadata.
[OWL] annotationSubject of Annotation Assertion

/ has metadata : Metadata [*] Subsets: about:1dentifiable Entity

Metadata associated with (data about the information concerning) the subject entity.
[OWL] AnnotationProperty, annotationValue of Annotation Assertion

14.8 Association Record of an Entity

Relationship between a thing and records (or information) about that thing.
Note that in SMIF, things refer to the actual thing they represent, not data about it (unless the type is a record, in which
case the "thing" is the data). This relationship recognizes that both a thing and data about the thing are things.

[IDEAS] describedBy: A representedBy that asserts that a Description describes a Thing.

Association Ends
/s about : Identifiable Entity [*] Subsets: about:Identifiable Entity
The thing described by a record.

/ has record : Record [*] Subsets: about:1dentifiable Entity

A record about something.

14.9 Association Source of Information

Relation defining an entity making a statement represented within a model. E.g. the person or organization that made a
statement.

[ISO 1087] source identifier: information in a terminological entry (3.8.2) which indicates the source documenting the
terminological data (3.8.1)

Association Ends
e made statement : Identifiable Entity [1..*] Subsets: about:Identifiable Entity
Metadata representing statements made by an authoritative source.

Sources may be people, organizations, documents, information systems, etc.

e has authoritative source : Information Source [*] Subsets: about:Identifiable Entity
Metadata representing the authority behind a statement - who or what made a statement captured in a model.

Semantic Modeling for Information Federation (SMIF) 0.9 117

14.10Class Statement

Statements provide metadata as to the source of information - who or what said it.
This source of the information may be captured using "InformationSource" metadata about the metadata.

[ISO11404] provision that conveys information

Direct Supertypes
Metadata

Attributes

 statement date and time : Value Type
Metadata representing the date and time the statement was made or modified.

© version : Value Type
Metadata representing an identifier for a version of information.

© transaction id : Value Type
Identifier for an act or transaction creating or modifying information.

118 Semantic Modeling for Information Federation (SMIF) 0.9

15SMIF Conceptual Model::Patterns

Patterns are templates for structures or compositions of things that may then be expressed as instances of the pattern.

15.1 Diagram: Patterns

package Pattems| Futerr‘sy

+hdds within

Assertion

:ﬂsgiedw'ﬂ‘in

Negation +negates

«Suffident»

+subject type

{redefines hdds within} 1

Type

*

Pattems, like al propositions can
assert other propositions (including
relationships) as true within that

«Equivalent Property» pettem. These assertions may
{chein = constrained by, is of type} | « reference pattern properties as
sof variables.
+isoftype
S 0..1| *+oroperty of
+hes property
yType |
S
AN 1.* { nes cat izes}
[Froperty Qe | | Ledend Sope |
’ Owned Property Type ‘ «Sufficient»
{redefines property of, redefines stated by}
Onning pettem «Intersection»
e o
T +owns variable T 1| +sctisfies

{subsets states, redefines has property}

Pattemn Variable

{redefines bound by}

+qudlification : Variable Qudification [1]
+explidt : Bodean

+exdudedby *

Conrputed

atributes
“+ocomputation : Expression Node [0..1]

-exdudes

* +subsetsl >

Subsetting

Part Variable
+s boundary part : Bodean [0..1]

Subject of Pattem Relationship

Bxdusion by 1

* Ksuosets states}

Variable Binding
{redefines has
binding}
’ Owned Property Binding
{redefines has «enuneration»
| owning pattemy} Variable Qualification
Pattem Sdlect
o et | 4
+asserts| 0.* Assert
Bactly One
{subsets asserts} There Bxists
Al

x. Patterns

Semantic Modeling for Information Federation (SMIF) 0.9

119

15.2Class Computed

Attributes

' computation : Expression Node [0..1]
<computation> provides an expression that computes a value for the variable based on the expression applied to the

current context..

15.3 Association Exclusion

Association Ends
/ excluded by : Pattern Variable [*] Subsets: about:Identifiable Entity
/ excludes : Pattern Variable [*] Subsets: about:Identifiable Entity

15.4Class Expression Variable

An expression variable defines the value of the variable as computed by <computation>. Note that expression variables
are not always able to be asserted or reversed and may therefore not provide for bi-directional mapping patterns. Any
ability to assert or reverse a computation is implementation specific.

Direct Supertypes
Computed, Pattern Variable

15.5Class Focus Variable

A property variable of a pattern representing the extent of the subject type within the context of the owning pattern.
The value of qualification shall be "Select".
The <has type> of the variable is asserted be the same as the subject type of the pattern.

Direct Supertypes
Type Pattern Variable

15.6 Association Match Rules

Relationship defining the match rules for a mapping.

Direct Supertypes

Rule Constrains, Statement

Association Ends
* has map rule : Match Rule [*] Subsets: about:Identifiable Entity
Map rule that is asserted by a mapping.

v map rule of : Mapping [1] Subsets: about:Identifiable Entity
Mapping containing a map rule.

120 Semantic Modeling for Information Federation (SMIF) 0.9

15.7 Class Part Variable

A pattern property variable representing a part of the subject type. Additional relations and rules may be made about the
part. A type with parts is by its nature a composition.

Direct Supertypes
Type Pattern Variable

Attributes

< is boundary part : Boolean [0..1]
True if the property is on the boundary of the pattern and connectible (may have relationships) external to the pattern.
e.g. "Port"

15.8 Class Pattern <<Intersection>>

A pattern represents a set of assertions true about individuals or sets of individuals qualified by pattern properties. All
propositions asserted or negated by a pattern (as a context) are considered "templates" where identity is not required to
match.

The structure of the pattern is defined by the properties and asserted (sub) situations (including relationships) that are
asserted by the pattern.

In many cases the relationships and rules defined for a pattern will reference pattern properties. These relationships will
hold for instances of the pattern where things are bound to the pattern properties.

[DTV] general situation kind: situation kind that is not an individual situation kind. A situation kind is a general situation
kind if it can be exemplified by more than one Event in some possible world, even when it cannot have more than one
Event in the possible world chosen to be the universe of discourse.

[UML] StructuredClassifier. Also Similarity with TemplateSignature

[OWL] May be used to represent Class Expressions
Direct Supertypes

Lexical Scope, Property Owner, Situation, Situation Type

Associations

" <<Sufficient>> owns variable : Pattern Variable [*] Subsets: states:Thing Redefines: has property:Property

Type
through association: Pattern Variables

A variable property defined within the context of a pattern that is used as part of the patterns definition.
[UML] ownedAttribute

/ satisfied by : Pattern Match [*]
through association: Pattern Matches

Pattern match that satisfies a pattern.

15.9 Association Pattern Bindings

Association Ends
»" . Variable Binding [*]

Semantic Modeling for Information Federation (SMIF) 0.9 121

»" . Pattern Match [1]

15.10Class Pattern Match

A pattern match provides the corespondents between a pattern and the situations it matches using variable bindings.
A pattern match implies and proves that the pattern <categorizes™> the situation.
The matched pattern <states> any consequences of the matching, such as the pattern <categorizes™> the pattern instance.

dass Pattemn MatcH [Pattem Matchy
«Intersection»
«Intersection» Actual Situation 5
Petiom [Stwesion]
+satisfies | 1 1 | +matches
Pattem Metches +Hratched by
+satisfied by, Pattem Match 1, Situgtion Metches
Thing 1 {redefines
1 T +bincs stated by}
+Hooundi
Property Binding
Bound Individual * See Also
Bound Subjedt s binding
* Pattemn Bindings Pattemns
| Owned Property Binding |
+Hoound to 1
Identifiable Entity T ciztesy
subsets 1
| Variable Binding * Pattemn Varicble
Kredefines has {redefines
binding) bound by}
e Pattern Match
Direct Supertypes

Actual Situation

Associations
»" . Variable Binding [*] Subsets: states:Thing
through association: Pattern Bindings

/" satisfies : Pattern [1]
through association: Pattern Matches

Pattern that is satisfied by a "Pattern Match" based on a set of "Variable Bindings".

/s matches : Situation [1]
through association: Situation Matches
The situation qualified as matching the <satisfies> pattern based on the set of "Variable Bindings" stated.

122 Semantic Modeling for Information Federation (SMIF) 0.9

15.11 Association Pattern Matches

Association Ends
/" satisfies : Pattern [1]
Pattern that is satisfied by a "Pattern Match" based on a set of "Variable Bindings".

/ satisfied by : Pattern Match [*]
Pattern match that satisfies a pattern.

15.12Class Pattern of Type

A pattern of type defines a set of properties and relationships that must hold true for all instances of a type. Where the
pattern includes parts, the subject type is a composition.
Patterns augment the semantics of th subject type in the context of the pattern.

Direct Supertypes

Pattern

Associations
v <<Restriction>> : Type Pattern Variable Subsets: owns variable:Pattern Variable
e <<Sufficient>> subject type : Type [1] Redefines: holds within:Context

through association: Subject of Pattern Relationship
The type which is the context of a pattern of type. The pattern is "about" the subject type.

15.13Class Pattern Variable

A pattern variable is a property of a pattern that provides a contextual property within that pattern for rules and
relationships to be bound to.

A pattern variable is a placeholder for all or a subset of the instances of the variables type.

Properties of an association or relationship may be bound to a pattern variable where the type of the pattern variable is
compatible with the type of the relationship's property type.

[UML] Similarity with TemplateParameter
[CL] Functional Term

Direct Supertypes

Conditional, Owned Property Type

Attributes
@ qualification : Variable Qualification [1]

<qualification> defines the behavior of an element with respect to a pattern - how the variable impacts the selection,
evaluation or assertion of the pattern.

< explicit : Boolean
If true, Element must be explicitly asserted as the indicted type, not derived or inferred from a supertype or super

property.

Associations
/ <<Restriction>> : Variable Binding [*] Redefines: has binding:Property Binding

Semantic Modeling for Information Federation (SMIF) 0.9 123

v’ <<Sufficient>> has owning pattern : Pattern [1] Redefines: property of:Type stated by:Lexical Scope
through association: Pattern Variables

Pattern owning a pattern variable.

/ has subset : Pattern [1] Redefines: property of:Type stated by:Lexical Scope
through association: Subsetting

Subsets of the variable.

/ maps to : Match End [*]
through association: Mapped variable

Map rule end for a property

/" subsets : Match End [*]
through association: Subsetting

Variable that a subset variable subsets. The subset variable shall be populated by a subset of the <subsets>
variable based on the type and constraints of the subset variable.

/ excluded by : Match End [*]
through association: Exclusion

/" excludes : Match End [*]
through association: Exclusion

15.14 Association Pattern Variables

Relationship defining variable properties within a pattern.

Direct Supertypes

Statement
Association Ends

" owns variable : Pattern Variable [*]

A variable property defined within the context of a pattern that is used as part of the patterns definition.
[UML] ownedAttribute

* has owning pattern : Pattern [1]
Pattern owning a pattern variable.

15.15Class Proposition Variable

A proposition variable utilizes some proposition (e.g. relationships) as a part of the definition of a pattern, it extends a
basic proposition in that it adds properties to determine the effect the assertion has on pattern instances.

A Proposition Variable is a lexical scope context that <asserts> or <negates™> other propositions qualified by <has
strength> and <explicit>. As a lexical scope it may "own" the asserted propositions.

Proposition Variable is often used with associations and relationships to define the way pattern properties are related to
other pattern properties or actual entities.

For a pattern associations, [UML] Connector. (type = has type). Each ConnectorEnd corresponds with a Structured
Property Binding.

Direct Supertypes
Pattern Variable

Associations

124 Semantic Modeling for Information Federation (SMIF) 0.9

/ qualifies : Proposition [1]
through association: Qualified Proposition

15.16 Association Qualified Proposition
Association defining exactly one proposition (such as an association) qualified by a qualified proposition variable.
Association Ends

/s qualifies : Proposition [1]
qualified within : Proposition Variable [0..1]

15.17 Association Situation Matches

Association Ends
/" matches : Situation [1]
The situation qualified as matching the <satisfies> pattern based on the set of "Variable Bindings" stated.

e matched by : Pattern Match [*]
Pattern matches that match the subject situation.

15.18 Association Subject of Pattern Relationship
Relationship defining the subject pattern of a type specific pattern.

Direct Supertypes
Assertion
Association Ends

e asserts pattern : Pattern of Type [0..¥]
A pattern asserted for all instances of a type. Where the pattern includes parts, the type defines a composition.

e subject type : Type [1]
The type which is the context of a pattern of type. The pattern is "about" the subject type.

15.19 Association Subsetting

In a pattern or mapping rule, defines a variable that represents a subset of another property (or if multiple, their union).
The subset may be constrained by a more specific type, expressions or required cardinalities.
Subset: Set A is a subset of set B if all of the elements (if any) of set A are contained in set B

Association Ends

/s subsets : Pattern Variable [*]

Variable that a subset variable subsets. The subset variable shall be populated by a subset of the <subsets>
variable based on the type and constraints of the subset variable.

/ has subset : Pattern Variable [*]
Subsets of the variable.

Semantic Modeling for Information Federation (SMIF) 0.9 125

15.20Class Type Pattern Variable

Type Pattern variable is an abstract supertype that provides for a restriction that parts and focus properties must be
owned by a pattern of a type.

Direct Supertypes
Pattern Variable

Associations
" <<Restriction>> : Pattern of Type Redefines: has owning pattern:Pattern

15.21Class Variable Binding

A variable binding defines a value for a particular variable of a particular owning pattern as part of a pattern match.

Direct Supertypes
Owned Property Binding

Associations
/ <<Restriction>> : Pattern Variable [1] Redefines: bound by:Property Type

»" . Pattern Match [1] Redefines: stated by:Lexical Scope
through association: Pattern Bindings

15.21.1 Enumeration Variable Qualification

Variable qualification values define the behavior of an element with respect to a pattern - how it impacts the selection,
evaluation or assertion of the pattern.

package SMIF Conceptual Model::Patterns
public enum Variable Qualification
{Select, Optional, Assert, Negate, Exactly One, There Exists, All}

Literals
& Select

Select is used in query and mapping patterns, all elements of the classified type that match the pattern are selected as
instances of the pattern.

Select may be considered a qualified "All". Select does not assert the existence of something, it determines the existence
of a pattern match such that other assertions may be made.

Where a pattern is asserted, "Select" variables shall be asserted.

Relationships between properties with <quantifier>=Select must hold between the selected properties for the pattern to
be asserted.

= Optional

Optional is used in query and mapping patterns, the property shall be populated as a consequence of the pattern
matching.

Where a pattern is asserted, "Optional" variables shall not be asserted.

Optional is the default if no qualification is stated.

o Assert

126 Semantic Modeling for Information Federation (SMIF) 0.9

The property does not impact the selection of the pattern, it is an asserted consequence of the pattern.

= Negate

The property does not impact the selection of the pattern, it is negated consequence of the pattern - it may not exist.

o Exactly One

The existential quantifier limited to exactly one of a potentially larger set of the properties type.

' There Exists

The existential quantifier - at least one of the properties type.

<Al

The universal quantifier - the quantified property is a stand-in for all elements of the existent of the quantified type

Semantic Modeling for Information Federation (SMIF) 0.9

package Patems| Pattems | . .
J 5 +hdds within Assertion +asserts A itic
“+negated within Negation +egaes
* " X
«Suffident» T
+subject type e
{redefines hdds within} 1 Pattems, like dll propasitions can
assert other propositions (including
a relationships) as true within that:
«Equivalent Property» pettem. These assertions may
{chain = constrained by, is of type} rée;g‘oepdtenprtpeﬁs&
variables.
is of
+sdf type o.] +Property of
+has property
yType |
Property Type " Properties Relationship subsetsfestype} N Em..:)m
A 1. {redefines categarizes} 1
’ Owned Property Type ‘ «Sufficient» ’ ‘ ’ ‘ Situation Kinds|
{redefines property of, redefines stated by}
Onning pattem «Intersection»
e =
7 +owns varisble T 1| +sdtisfies
- {subsets states, redefines has property}
Pattem Variable {redefines bound by}
+qualification : Variable Qualification [1]
+exqidt : Bodean +edudedby *
-exdudes | * +subsets|* Suiosetting
Conputed Bdusion
atributes
“+ocomputation : Expression Node [0..1]
* Ksubsets states}
Variable Binding
. - {redefines has
Bqoression Variable binding)
’ Owned Property Binding ‘
variable}
Type Pattern Variable
{redefines has «enumeration»
| owring pettem} Variable Qualification
Part Variable ’ Vo PdtsnidTE aegu
+is boundary part : Bodean [0..1] o
pattem Bactly One
Subject of Pattem Relationship {subsets asserts})I/Exsts
Al
y. Patterns
127

128 Semantic Modeling for Information Federation (SMIF) 0.9

16 SMIF Conceptual Model::Properties

Properties define the most granular connections between entities or values. Properties may be used as the ends of
relationships, to represent individual characteristics or as elements of a data structure.

16.1Diagram: Characteristics

package Properties| O‘aacte'isti(sy
«Suffident»
BExtent of Type +categorizes|, Thing
i |
{redefines contextualizes) soings|1 § * | +oontextualizes
«Sufficient» «Suffident»
Extent of Context
{subsets in context of}
« | Hestype .
1. o Bound Individual
Type
0.1 1.*
Hsof Properties Relationship Subjedt +in context of
{chain = constrained Context
by, is of type}
+hadds within| *
«Suffident»
Assertion
+has property | * +bound in * +has binding *
’ Erﬁty.rype‘ ’ Froperty Type ‘ ’ Property Binding ‘ «Sufficient»
AN T Bound Property [« ~ +asserts| ™
[Aot |
-+bound by -+has binding
{redefines has typs} {redefines categorizes}
Terrporal Entity
L\
1.* .
Situation Type | i Situation ‘
{subsets has See Also {redeﬁngs
type} categorizes} T
e
«Intersection»
Properties Actual Situation
‘ Characteristic Type | Characteristic Binding |
v {redefines {redefines has
bound by} binding}
Annotation Property

Semantic Modeling for Information Federation (SMIF) 0.9

Zz.

Characteristics

129

16.2Diagram: Properties

package Fi'operties[Propa‘tlesy
«Suffident»
Bxtent of Type +<ztegmzes{ Thing
* . 7oy ~
{redefines contextudizes} +b|nds 1
«Suffident»
Identifiable Entity
{subsets in context of} +boundtg 1
1% +has type Bound Individual
“+Horoperty of
Type 0.1
" s ofype Properties Relationship Bound Subjedt
{dhain = constrained
by, is of type}
; . -+Hoound in * E’-:'m binding| *
Property Type | Property Binding
T1 Bound Property
-Hoound by +has binding
{redefines has type} {redefines categorizes}
{redefines has binding}
Owned Property Type L Owned Property Binding
{subsets bound by} *
* lfsubsets states, {subsets states, redefines | *
redefines has has binding}
property}
{redefines property dof,
1 redefines stated by} {redefines bound to,
= redefines stated by} 1
Property Onner Type 1% * Property Owner
{redefines has type} {redefines categorizes}
See Also

aa. Properties

16.3 Class Annotation Property

An annotation property is a specialization of property where the referenced elements represent metadata about the
related proposition, structure or information (or model element) rather than a fact or condition of the domain being
represented.

For an annotation property, <is of type> describes instances of the structured type for which the property is defined.
Typical uses of annotations include provenance of information, when a record was created, etc.

[ISO11404] annotation: descriptive information unit attached to a datatype, or a component of a datatype, or a procedure
(value), to characterize some aspect of the representations, variables, or operations associated with values of the
datatype

Direct Supertypes

130 Semantic Modeling for Information Federation (SMIF) 0.9

Characteristic Type

16.4 Association Bound Individual
Relationship defining the thing bound to a subject based on a bound property - the "object" of the property binding.

Association Ends
7 binds : Thing [1] Redefines: stated by: Lexical Scope
The thing bound to a property in a specific situation. E.g. if the weight of truck-XYZ is 4500 LBS, the bound
individual would be "4500 LBS".
[FUML] value
[OWL] rdf:object

e bound in : Property Binding [*] Redefines: stated by: Lexical Scope
Bindings in which a thing participates.

16.5 Association Bound Property

Relationship defining the property type that defines the semantics of a property binding. E.g. if the weight of truck-XYZ
is 4500 LBS, the bound property could be "has weight".

Direct Supertypes
Extent of Type

Association Ends
/" has binding : Property Binding [*] Redefines: stated by: Lexical Scope
Bindings referencing a property.

e bound by : Property Type [1] Redefines: stated by: Lexical Scope
The property a binding binds a thing to.

[FUML] definingFeature

[OWL] rdf:predicate

16.6 Association Bound Subject

Relationship defining the subject of a bound property. Where the subject is a relationship, the relationship becomes
transparent and the applicable subject(s) are the other ends of the relationship. E.g. if the weight of truck-XYZ is 4500
LBS, the bound subject would be Truck-XYZ".

Association Ends
v has binding : Property Binding [*] Redefines: stated by: Lexical Scope

Bindings asserted for properties within a situation.

/" bound to : Identifiable Entity [1] Redefines: stated by: Lexical Scope

The subject of a property binding.
[FUML] owninglnstance (note that in SMIF the owner and subject may not be the same). Where the are the same, the
semantics are the same as FUML.
[OWL] rdf:subject

Semantic Modeling for Information Federation (SMIF) 0.9 131

16.7 Class Characteristic Binding

A characteristic of a specific thing, e.g. the color of Pump-1234 in the <bound to> entity. A characteristic is a "first
class" element and may participate in relationships and have annotations.

[IDEAS] measureOfIndividual: A typelnstance that asserts an Individual is an instance of a Measure - i.e. the Individual
"has" a property corresponding to the Measure.

[ISO 1087] characteristic: abstraction of a property of an object (3.1.1) or of a
set of objects

[Guizzardi] quality(x) =def 'U qualityUniversal(U) A (x::U)

[DOLCE] Quality

Direct Supertypes
Actual Situation, Property Binding

Associations
/" <<Restriction>> : Characteristic Type Redefines: bound by:Property Type

16.8 Class Characteristic Type

A kind of characteristic a type of thing may have, e.g. paint may have a color. Characteristic type is the type of
characteristic bindings which are "first class" elements and may participate in relationships and have other
characteristics.

[IDEAS] Property: An IndividualType whose members all exhibit a common trait or feature. Often the Individuals are
states having a property (the state of being 18 degrees centigrade), where this property can be a CategoricalProperty
(qv.) or a DispositionalProperty (qv.).

[ISO 1087] type of characteristics: category of characteristics (3.2.4) which serves as the criterion of subdivision when
establishing concept systems. NOTE The type of characteristics colour embraces characteristics (3.2.4) being red, blue,

green, etc. The type of characteristics material embraces characteristics made of wood, metal, etc.

[FIBO] Simple Property: Simple Properties are assertions about things in a class, which may be framed in terms of some
simple type of information.

[Guizzardi] qualityUniversal(U)
[DOLCE] Quality Type

[OWL] rdf:Statement

[UML] Property

Direct Supertypes
Property Type, Situation Type

Associations
/s <<Restriction>> : Characteristic Binding Redefines: has binding:Property Binding

132 Semantic Modeling for Information Federation (SMIF) 0.9

16.9 Class Owned Property Binding

An owned property binding defines a value for a particular property of a particular owning property type (or structure).
Similar to an OWL triple, an owned property binding does not have independent identity.

Constraint: Each owned property binding must be <bound by> an owned property type that is owned by the <has type>
owned type of the <bound to> property owner.

Owned property type is abstract and not intended to directly represent semantic elements.
Direct Supertypes
Property Binding

Associations
e <<Restriction>> : Owned Property Type [1] Subsets: bound by:Property Type
A structure property binding may bind a characteristic.

¥’ <<Restriction>> : Property Owner [1] Redefines: bound to:Identifiable Entity stated by:Lexical Scope

16.10Class Owned Property Type

An owned property type is a property definition defined as a composite part of an association type - most often used in
data structures and relationships. Association property types are the types of association property bindings. Also known
as "association end".

[FIBO] Relationship Property
[FUML] memberEnd (of association) Property

Direct Supertypes
Property Type

Associations
/" <<Restriction>> : Owned Property Binding [*] Redefines: has binding:Property Binding
v’ <<Restriction>> : Property Owner Type [1] Redefines: stated by:Lexical Scope property of:Type

16.11 Association Properties Relationship

Relationship defining the set of properties defined for a type.

Where the <property of> type is a relationship type, the "subject" of the property is the other ends (properties) of the
relationship.

Where the <property of> type is not a relationship, the subject of the property is the <property of> type.

Association Ends

/" has property : Property Type [*] Redefines: stated by: Lexical Scope property of: Type

A property of a structured type such that there may be bindings of a thing to instances of the structured type
with reference to the property which defines the semantics of the bound thing withing the context of the structure.
[FUML] feature
[UML] memberEnd. attribute (of classifier).

/ property of : Type [0..1] Redefines: stated by: Lexical Scope property of: Type

Type for which a property is relevant. The domain of the property.
<property of> excludes "Owned Property Type" and ("Association Type" that is not "Relationship Type")
[FUML] featuringClassifier
[OWL] Domain

Semantic Modeling for Information Federation (SMIF) 0.9 133

16.12Class Property Binding

A property value binding binds a particular thing (the value) to a situation based on a defined property.
Where <binds> is an expression evaluation, the property value shall evaluate to the evaluation of the expression.

Where <binds> is a property, the property value shall be the property values bound to that property in <bound to>
situation.

The bound to thing must conform with the <is of type> type of the property. If the bound individual conforms to the
"requires type" of the property, the <is of type> of the bound thing will be asserted.

The type of the <bound to> structure must (directly or indirectly) have the type the <bound by> properties <property
of> type.

[FUML] Slot (Noting that in SMIF the binding may or may not be owned by the subject, depending on the subtype of
property).

[CL] Binding:

[OWL] Union(ObjectPropertyAssertion, DataPropertyAssertion, AnnotationAssertion), RDF Triple
=Note: RDF Triples do not have identity where as some subtypes of SMIF:Property Type do have identity and are
therefor statements.

Direct Supertypes
Thing
Associations
/" binds : Thing [1]
through association: Bound Individual
The thing bound to a property in a specific situation. E.g. if the weight of truck-XYZ is 4500 LBS, the bound
individual would be "4500 LBS".
[FUML] value
[OWL] rdf:object

/" bound by : Property Type [1] Redefines: has type:Type
through association: Bound Property
The property a binding binds a thing to.
[FUML] definingFeature
[OWL] rdf:predicate

e bound to : Identifiable Entity [1]
through association: Bound Subject
The subject of a property binding.
[FUML] owninglnstance (note that in SMIF the owner and subject may not be the same). Where the are the same, the
semantics are the same as FUML.
[OWL] rdf:subject

134 Semantic Modeling for Information Federation (SMIF) 0.9

16.13Class Property Owner

Property Owner is an abstract element for anything that may own a set of property bindings. This element is abstract and
not intended to directly represent domain concepts. Subtypes of property owner provide semantic interpretation.

Direct Supertypes
Thing
Associations

¥’ <<Restriction>> : Owned Property Binding [*] Subsets: states:Thing Redefines: has binding:Property
Binding
/ <<Sufficient>><<Restriction>> : Property Owner Type [1..*] Redefines: has type:Type

16.14Class Property Owner Type

A type of Property Owner (See Property Owner for details) which defines a set of "Owned Property Types" which are
the types of owned property bindings.
Property owner is abstract and not intended to directly represent semantic elements.

Direct Supertypes
Type
Associations
e <<Sufficient>><<Restriction>> : Property Owner [*] Redefines: categorizes:Thing
v’ <<Restriction>> : Owned Property Type [*]1 Subsets: states:Thing Redefines: has property:Property Type

16.15Class Property Type

A property type defines the way in which instances of a type participate in (or, are involved in) instances of another type
(including relationships). Sometimes called a variable, argument or role.

In a conceptual model the terms associated with a property kind are typically "verb phrases" defining how instances of
the involved type participate in the situation or relationship.

In a record (data structure) the property is a "slot" of a record and may have a term which is a noun or verb phrase.

So that constraints of a type flow to relationships involving that type: All propositions that hold within a type referenced
by <is of type> hold within the structured type referenced by <property of>. I.e. the structured type is in the context of
the types of its properties.

In a function, a property is a function argument.

[Guizzardi] MomentUniversal

[FUML] Parameter where owner is operation. Otherwise Property.

[UML] Property. All typed elements in SMIF are Property Types.

[CL] Operator: distinguished syntactic role played by a specified component within a functional term
[OWL] rdf:Property, ObjectUnionOf(owl:ObjectProperty, oe;DatatypeProperty).

Direct Supertypes

Type
Associations

Semantic Modeling for Information Federation (SMIF) 0.9 135

e is of type : Type [*]
A type of instances bound to a property. Also known as the "range" of a property.
If asserted the property rule shall be owned and asserted by the properties <property of> type.

[OWL] Range

/s <<Restriction>> : Property Constraint [*] Subsets: constrained by:Rule
/ property of : Type [0..1]
through association: Properties Relationship

Type for which a property is relevant. The domain of the property.
<property of> excludes "Owned Property Type" and ("Association Type" that is not "Relationship Type")
[FUML] featuringClassifier
[OWL] Domain

136 Semantic Modeling for Information Federation (SMIF) 0.9

17 SMIF Conceptual Model::Records

A record of the condition of an entity at a point in time - this includes facts, speech acts and DBMS records. Records are

a kind of information.

Records are typically used in data representations, not conceptual models.

17.1 Diagram: Records

Semantic Modeling for Information Federation (SMIF) 0.9

package Reocords[I%oorcby
«Sufficient» «Suffident»
Type Hes type
0.1 Iﬁrl 1-
{subsetsin
oontext of}
Entity Type 1.7
{subsets has
type}
Subject of Record Type
Situation Type [(Stbssts has type} {redefines categorizes} | Situation |
1.* *
AN
Actual Entity Record of an Entity
J
«Intersection»
Actual Situation
AN
«Suffident»
«Restriction» *
: R i +has record
{subsets has type} {redefines categorizes} *
\/
| 5 Type | Property Onner
{redefines ! {redefines bound to,
property o, 1 See Also redefines stated by}
redefines
R
Properties
{subsets {subsets
states, states,
redefines has redefines hes
. property} » | binding}
Owned Property Type Owned Property Binding
1 *
{subsets bound by} {redefines has binding}
bb. Records

137

17.2Class Record

A record of the condition of an entity at a point in time - this includes facts, speech acts and DBMS records.
Records are typically used in data representations, not conceptual models. Records specialize associations as owners of
properties.

[IDEAS] A Representation that describes a Thing

Direct Supertypes

Actual Situation, Property Owner

Associations

/" about : 1dentifiable Entity [*]
through association: Record of an Entity

The thing described by a record.

/" <<Sufficient>><<Restriction>> : Record Type [1] Subsets: has type:Type

17.3Class Record Type

Type of the record of the condition of an entity at a point in time - this includes facts, speech acts and DBMS records.
A record type may involve variant and invariant types as variables. Those that are enumerated in a "uniqueness
constraint" are invariant (independent variables) uniquely identify the situation which is the subject of the fact type
where as the other variables may change over time (dependent variables).

Record types may be grounded in atomic relations by using invariant conditions.

Record types represent typical "data structures".

Direct Supertypes
Property Owner Type, Situation Type
Associations

/ <<Sufficient>><<Restriction>> : Record [*] Redefines: categorizes:Thing

e about type : Type [0..1]
through association: Subject of Record Type

Thing for which a record exists

17.4 Association Subject of Record Type
Relationship defining types of records for another type.

Association Ends
about type : Type [0..
/" ab Type [0..1]
Thing for which a record exists

v recording types : Record Type [*]
Record for a thing.

138 Semantic Modeling for Information Federation (SMIF) 0.9

18 SMIF Conceptual Model::Relationships

Relationships are primitive but identifiable conditions that relate other entities through properties of the relationships.
Relationships have their semantics described by a relationship type. The ends of relationships are defined by "structured

property type", a relationship may have any number of "ends".

Relationships are first-class "actual" and "temporal" things that exist in their own right. These are known as "external
p p g g

relations" in much of the theoretical literature.

18.1 Diagram: Relationships

package Relationships] Raajcrshipsy
Context | Hhdds within Assertion
< See Also
«Equivalent Property» ZF o ies Relati .
+has supertype p= +oroperty of Properties ionship . .
'ype
{chain = constrained | Properties Associations
by, has spedificy +is of type | «Equivalent Property» "
* |{chain = constrained
by, is of type} Situations
| hes - ~+bound by -+hes bindi
;# Property Type ‘k Property Bindng
1 Bound Property >
Entity Type
N—J
Situation Type hes type) *] Situation ‘
1. {redefines categarizes} l T
Property Onner Type «Intersection» Lnupertyannej
- Actual Situation -
1 {redefines {redefines 1
{redefines hes type} categorizes} {redifines
property o, bound to,
redefines redefines
stated by} stated by}
{subsets has type} - io
1.* {redefines categorizes}
{subsets {subsets
states, states,
redefines has redefines has
property} binding}
* <<SJfﬁq'g1t>> 4 *
o P ty Type] «Restriction» * T Brd
‘{Subsets bound by} {redefines has binding} nd
cc. Relationships
Relations are atomic actual situations that bind 2 or more properties as a fact.
Semantic Modeling for Information Federation (SMIF) 0.9 139

18.2Class Relationship

A relationship defines a situation involving related things. A relationship may be asserted within a context as true or false
within that context. Each relationship type has a number of bindings of which do not change for the life of the
relationship..

A relationship may be true or false within its context (including a timeframe) but is atomic in its truth value.
Relationships may participate in (be bound to) other relationships and as such bindings involving a relationship may
change over time. That is, relationships are "first class" objects.

[IDEAS] tuple: A relationship between two or more things.
Note: SMIF allows one end of a relationship.

[OWL] An OWL class that is a subclass of SMIF: Relationship

Direct Supertypes

Actual Situation, Property Owner

Associations
e <<Sufficient>><<Restriction>> : Relationship Type [1..*¥] Subsets: has type:Type

18.3Class Relationship Type

A relationship type defines a type of condition, the relationship, involving related things. A relationship may be asserted
within a context as true or false within that context. Each relationship type has a number of <has property> "structured
property type" properties which describe the role of the related things with respect to the relationship, values of which
uniquely do not change for the life of the relationship.

A relationship may be true or false within its context (including a timeframe) but is atomic in its truth value.
Relationships may participate in (be bound to) other relationships and as such bindings involving a relationship may
change over time.

The terms for properties of a relationship in a conceptual model are typically verb phrases, connecting the relationship
with the related types.

[FIBO] A kind of Mediating Thing

[IDEAS] TupleType: The Powertype of tuple.

[FUML] Association where memberEnd corresponds with <has property>. Note that SMIF relationships are "first class"
and may also be considered to correspond to an association class where there are any properties or other relationships
referencing the subject relationship.

[UML] AssociationClass (note that "end ownership" is meaningless in SMIF).

[Guizzardi2015] Relator: endurants of a special kind, with the power of connecting (mediating) other endurants. Note:
Guissardi "mediation" corresponds with relationship properties.

Direct Supertypes

Property Owner Type, Situation Type

Associations

140 Semantic Modeling for Information Federation (SMIF) 0.9

/ <<Sufficient>><<Restriction>> : Relationship [*] Redefines: categorizes:Thing

Semantic Modeling for Information Federation (SMIF) 0.9 141

19SMIF Conceptual Model::Rules

Rules define constraints or behaviors that are asserted in specified context.

19.1 Diagram: General Rules

package Rues| [f Gereral Rjesy

«Suffident»
+oonstrains,

*

Rule Constrains|

Conditional
atributes
+oondition : Expression Node [0..1]

| Conditional Rule | Enumerated | Equivalent | | Disjoint
| Type Constraint | | Property Constraint |
Type Constraints Property Constraints

dd. General Rules

142 Semantic Modeling for Information Federation (SMIF) 0.9

19.2Diagram: Property Constraints

package FUeS[Pmpatyo:xsharisy «Sufficent»
m“ia"s Identifiable Entity
Rue Constrains o0
«Sufficient»
+hdds within| *
[ommee]
Property Type
+oonstrains
1
{redefines corstrains} {subsets constrained by}
Disiaint property constraints
Property Type Constraint P ty Transitivity Constraint
-Horerequisite type : Bodean
+properties of type) *
Property Type
Hsoftype |1 +es
N Type 4 +has spedfic Spedalization - generdization Ger ization Constraint
redefines : N atributes
. i i) oconstrained by} | +redefines : Bodean
Properties Relationship
of +hes
+has property 0.1 1 +has genera Gererdlization spediaization|
Hisoftype| Applies to entity
Eqpivalert Property» alilois
{chain = constrained by, is of type} +mutiplicity +has
; of Mitipiaty Target mjtinhc:ty Muitiplicity Constraint
{redefines {subsets attributes
constrains} constrained by} | yininum nunrber : Integer [0..1]
+Hmeximumnunroer : Integer [0..1]
+with +at once : Bodean =true
+has supertype respect +s sufficent : Bodean
{chein= ined * . to Mutipligty Reference +respect of
by, hes spedficy "

ee. Property Constraints

This diagram focuses on rules about properties.

Semantic Modeling for Information Federation (SMIF) 0.9 143

19.3Diagram: Rules in Context

package Rues £ Riesin Cbntexty «Sufficient»
“+categorizes Thing
{redefines contextudizes} *
«Suffident»
+oontextudlizes
T «Suffident»
T
Bxent of Type Identifiable Entity | -+constrains
T Rule Constrains
BExtent of Context |
Proposition
+asserts| *
«Sufficient»
Assertion
«Suffidient»
+Hhadds within| *
1 *
+Hn context of
+halds within| *
«Suffident» Assertion
- Hhestype . «Sufficent»
{subsets in context of} | 1-- +asserts | *
T s
ype Proposition
Rue .
* |+subsumed by
Rule Subsunpti

ff. Rules in Context

This diagram shows how rules are propositions that may be asserted within any context to apply to any other context,
thus realizing the "open world assumption".

144 Semantic Modeling for Information Federation (SMIF) 0.9

19.4Diagram: Rules Summary

package Rues[Rues Sn‘n'a'yy

Rule Corstrainsg

Assertion

«Sufficient»
+hdds within| *

“Horerequisite type : Booean

Muitiplicity Constraint
Uniqueness Constraint +rininumnurrber : Integer [0..1]
+s primery identity : Bodeen Hreximumnuber : Integer [0..1]
ik E +at once : Bodean=true
+has uniqueness constraint* +is sufficent : Bodean
+has muitiplicity * * | +respect of
{subsets constrained by} +has speddlization
“with respect to | *
+m:lt|r.i|<:tyd Py — ir)
Urique St {redefines constrains}
+s covered by
« +has supertype
{chein = corstrained +oonstrains i
by, has spediig 1 {redefines constrains}
+s of type| * 1 |+Hsdftype
«Equivalent Property»:
{chain = constrained by, is of type}
+has uni 1.*
Property Type
i subsets constrained
+oonstrains {: by} | = o T
1 {redefines constrains} *
Disjoirnt p‘q:atyocrstrarisT
+properties of typel *
Property Type Constraint Property Transitivity Constraint

dg. Rules Summary

This diagram shown a summary of the primary rules.

Semantic Modeling for Information Federation (SMIF) 0.9

145

19.5Diagram: Type Constraints

package Rues| Type Oa'stranlsy
«Suffident»
+oorstrains| Identifiable Entity
Rule Constrains| Assertion
«Sufficent»
+holds within| *
Context
{subsets constrained by}
Muitiplicity Constraint ing
g e G et +rririnumnuber - Integer [0.1]| | Covering Constraint | 755 2 Generdlization Constraint
+s primery identity : Boolean +meximum number : Integer [0..1] “redefines - Bodean
+at once : Bodean =true +respect of A
* +hes +s sufficent : Bodean ~ +has generdization™+as spedializatior] ™
uniqueness .
constraint +has mutiplicity * {subsets constrained by}
{subsets constrained by} iplicity
MutipliGty Target - it
+ultiplicity of
{redefines constrains} | 1 -with respect to | *
T
e +s covered by
4 +oonstrains "
Unique Set {redefines constrains} +has spedfic S
Speddization
1 {redefines constrains}
Properties Relationship “Hproperty of
0.1 +has general o
«Equivalent Property»
Hs of type
+has supertype * n q B
{chain = constrained by, iss of type} ’ Facet Classification Constraint
{chain = constrained 8
T by, hes ifich «Sufficient» | {subsets hes general}
“+has uni 1.* +has property | * |
Property Type Facet
{redefines has spedfic}

hh. Type Constraints

This diagram focuses on rules about types (note that property types are also types).

19.6 Class Conditional

Anything with a condition defined by an expression.

Attributes

2 condition : Expression Node [0..1]
Condition that must be TRUE for an element to be asserted. All values other than "TRUE" are FALSE.

146 Semantic Modeling for Information Federation (SMIF) 0.9

19.7 Class Conditional Rule

A rule with a general expression as a condition that applies to what the rule <constrains>. Where asserted, the condition
must be true.
[UML] Constraint where "context" corresponds with <holds within> and "constrainedElement" corresponds with

nn

"constrains". "specification" corresponds with "condition".

Direct Supertypes

Conditional, Rule

19.8 Class Covering Constraint

A constraint that the extent (<categorizes> things) of the <constrains> type is equivalent to the union of the extents of
the <is covered by> types.
[UML] GeneralizationSet with isCovering=TRUE. "constrains" corresponds with the common "general" of each

"nn

Generalization". "is covered by" corresponds with each "special" of each generalization.
Direct Supertypes
Type Constraint

Associations

/ is covered by : Type [*]
through association: Covering Constraint

A type covered by a covering constraint.

The <constrains> type must be a direct supertype of all <is covered by> types.

19.9 Association Covering Constraint
Relationship defining the types covered by a covering constraint.

Association Ends
/ is covered by : Type [*]
A type covered by a covering constraint.

The <constrains> type must be a direct supertype of all <is covered by> types.

7 has covering : Covering Constraint [*]

Covering constraints of a type.

19.10Class Disjoint

Disjoint is a rule that the things denoted by what the rule <constrains> do not and may not denote any of the same set of
things.
When applied to a context (including types) all elements contextualized are included in the set of disjoint individuals.

[FIBO] Mutually Exclusive sets

[IDEAS] PartitionOfSetOfDisjointIndividuals: A FusionOfSetOfIndividuals whose fusioned Type is a

Semantic Modeling for Information Federation (SMIF) 0.9 147

SetOfDisjointIndividuals.

[UML] [UML] GeneralizationSet with isDisjoint=TRUE. "constrains" corresponds with "is covered by" of each
"special" of each generalization. Note the SMIF does not require that disjoint elements have a common supertype, one
may be inferred for UML mapping.

[OWL: Union(DisjointClasses, DisjointObjectProperties, DisjointDataProperties, DifferentIndividuals)

Rule

19.11 Class Enumerated

The contextualized elements of the <constrains> context is a closed (enumerated) set, it can not be extended. A.K.A.
"Closed World Assumption". Elements may not be asserted by any context other than the one specified in <holds
within>,

[FIBO] Selections of Things

[FUML] Wen constraining a type, corresponds with [FUML] "Enumeration". SMIF enumerations are not limited to
literals. The "ownedLiteral" corresponds with all elements owned by <holds within>.

[ISO11404] Enumerated: enumerated is a family of datatypes, each of which comprises a finite number of distinguished
values having an intrinsic order.

[OWL] ObjectUnitionOf(DataOneOf, ObjectOneOf)

Rule

19.12Class Equivalent

Equivalent is a rule that the things the rule <constraints> denote the same set of things. When applied to a context
(including types) each thing the context contextualizes is included in the set of equivalent things.

Related to*: [ISO 1087] synonymy: relation between or among terms (3.4.3) in a given language representing the same
concept (3.2.1)

Related to*: [ISO 1087] equivalence: relation between designations (3.4.1) in different languages representing the same
concept (3.2.1)

* SMIF relates concepts, not terms. synonymy may also be represented by multiple terms for the same concept.

[OWL] Union(Samelndividual, EquivalentClasses, EquivalentObjectProperties, EquivalentDataProperties)

Rule

19.13Class Facet Classification Constraint

A Facet Classification Constraint asserts that the specialized type is "non rigid" with respect to the general (rigid) type -
that is the <has specific> type may change over the lifetime of instances of the <has general> type. The <has specific>
type will be inferred to be a Facet. e.g. "Registered voter" is a facet of a person.

[FIBO] isPlayedBy

148 Semantic Modeling for Information Federation (SMIF) 0.9

Direct Supertypes

Generalization Constraint

Associations
e <<Sufficient>> : Facet Redefines: has specific:Type

19.14 Association Generalization

Relationship defining the general type of a generalization constraint.

[ISO 1087] generic concept: concept (3.2.1) in a generic relation (3.2.21) having the narrower intension (3.2.9)

Association Ends
/ has general : Type [1] Redefines: has specific: Type
The general type in the Generalization rule.

[ISO 1087] concept (3.2.1) in a generic relation (3.2.21) having the broader intension (3.2.9)

[FUML] General (Where redefines is false or not defined)
[FUML] RedefinableElement.redefinedElement (Where redefines is true)

/s has specialization : Generalization Constraint [*] Redefines: has specific: Type
Specialization rules for a type.

19.15Class Generalization Constraint

A Type Generalization Constraint is a taxonomic relationship between a more general <has general> type and a more
specific <has specific> type. Each instance of the specific type is also an instance of the general type. The specific type
inherits the properties and rules of the more general type.

The extent (<categorizes> property) of the specific type is the same as or a subset of the extent of the more general type.
Note that "multiple inheritance" is supported.

[IDEAS] superSubtype: A couple relating two Types which asserts that one type is a subset of the other.

[ISO 1087] generic relation: genus-species relation relation between two concepts (3.2.1) where the intension (3.2.9) of
one of the concepts includes that of the other concept and at least one additional delimiting characteristic (3.2.7)

[FIBO] Inheritance
[UML] Generalization

[Guizzardi] (Specialization relation): Let F and G be two universals such that F is a specialization of G. Then, for all w
€ W we have that extw(F) € extw(G)

[OWL] Union(SubClassOf, SubPropertyOf)

Direct Supertypes
Type Constraint

Attributes

2 redefines : Boolean

Semantic Modeling for Information Federation (SMIF) 0.9 149

Defines the generalization as a redefinition, subsuming the more general type in the definitional context.

Where <redefines> is true the more specific type subsumes the more general type in the definition context. In this case
the more general and more specific sets are equivalent. A type may be redefined multiple times, as long as it is
unambiguous which definition applies for a particular instance.

Where <redefines> is false or not defined the more specific type represents a subset of the more general property.

Redefinition is most often used with properties (as defined in UML) but may also be applied to other types.

Associations

/ has general : Type [1]
through association: Generalization

The general type in the Generalization rule.
[ISO 1087] concept (3.2.1) in a generic relation (3.2.21) having the broader intension (3.2.9)

[FUML] General (Where redefines is false or not defined)
[FUML] RedefinableElement.redefinedElement (Where redefines is true)

e has specific : Type [1] Redefines: constrains:Identifiable Entity

through association: Specialization

The specific type in a generalization rule.
[ISO 1087] generic concept: concept (3.2.1) in a generic relation (3.2.21) having the narrower intension (3.2.9)
[FUML] specific
[ISO11404] A subtype is a datatype derived from an existing datatype, designated the base datatype, by restricting the
value space to a subset of that of the base datatype whilst maintaining all characterizing operations. Subtypes
are created by a kind of datatype generator which is unusual in that its only function is to define the relationship between
the value spaces of the base datatype and the subtype.
[OWL] Union(rdfs:subClassOf, SubObjectPropertyOf, SubDataPropertyOf)

19.16Class Multiplicity Constraint

A Multiplicity constraint constrains the number of bindings <multiplicity of> types (including property types) may have
in a particular instance of the constrained type.

For a property type, The number of instances bound to a property for the set of instances bound to <with respect to>
shall be limited by the minimum and maximum number of the multiplicity.

For non-property types, the multiplicity shall apply to the extent of the type as described by <classifies>.
[IDEAS] superSubType

[FUML] MultiplicityElement: Note: Multiplicity Constraint constraining a type has semantics included in to UML
MultiplicityElement.

[OWL] Union(ObjectMaxCardinality, ObjectMinCardinality, ObjectExactCardinality, DataMaxCardinality,
DataMinCardinality, DataExactCardinality)

Direct Supertypes
Type Constraint

150 Semantic Modeling for Information Federation (SMIF) 0.9

Attributes

' mininum number : Integer [0..1]

Minimum number in a set as constrained by a multiplicity.
[FUML] MultiplicityElement.lowerValue

[OWL] MinCardinality

< maximum number : Integer [0..1]

Maximum number in a set as constrained by a multiplicity.
[FUML] MultiplicityElement.upperValue

[OWL] maxCardinality

© at once : Boolean = true

When at once is true, the constraint applies for each snapshot in time but not across snapshots (e.g. a car can have at
most one driver at a time). When at once is false the constraint applies across all time (e.g. a person has exactly one birth
mother across all time).

< s sufficent : Boolean
One of the set of sufficient conditions that will infer the type designated in <constrains>.
Associations

e with respect to : Type [*]
through association: Multiplicity Reference

One or more types or properties that define the "from" side of a multiplicity.

Where with respect to is undefined and <multiplicity of> is a property, all properties that are <property of> the same
structured type as <multiplicity of> shall be considered the set of <with respect to> properties. I.e. all the "other ends"
of a relationship.

<with respect to> provides for complex multiplicities across n-ary situations, data structures and relationships.

/ multiplicity of : Type [1] Redefines: constrains:Identifiable Entity
through association: Multiplicity Target

The type or property that is the subject of a multiplicity constraint.

19.17 Association Multiplicity Reference

Multiplicity may be defined between things. E.g. there are 2 wheels on a motorcycle. This is most often required where
relationships have more than 2 ends.
Multiplicity reference defines the "from" side of such a multiplicity (e.g. the motorcycle).
Association Ends
e with respect to : Type [*] Redefines: constrains: Identifiable Entity
One or more types or properties that define the "from" side of a multiplicity.

Where with respect to is undefined and <multiplicity of> is a property, all properties that are <property of> the same
structured type as <multiplicity of> shall be considered the set of <with respect to> properties. I.e. all the "other ends"
of a relationship.

<with respect to> provides for complex multiplicities across n-ary situations, data structures and relationships.

e respect of : Multiplicity Constraint [¥*] Redefines: constrains: Identifiable Entity

Semantic Modeling for Information Federation (SMIF) 0.9 151

Multiplicity constraints using a property or type as a <with respect to> reference.

19.18 Association Multiplicity Target

Relationship defining the type a multiplicity rule applies to. Note that properties are types and may also have
multiplicity constraints.

Direct Supertypes

Rule Constrains

Association Ends
e multiplicity of : Type [1] Redefines: constrains: Identifiable Entity
The type or property that is the subject of a multiplicity constraint.

e has multiplicity : Multiplicity Constraint [*] Redefines: constrains: Identifiable Entity

Multiplicity constraint of a type or property.

19.19Class Property Constraint

Abstract supertype for constraints that constrain properties types.

Direct Supertypes
Rule

Associations
/s <<Restriction>> constrains : Property Type [1] Redefines: constrains:Identifiable Entity

19.20Class Property Transitivity Constraint

A transitive property defined by <constrains> interlinks two individuals A and C whenever it interlinks A with B and B
with C for some individual B.

For example "larger than" is transitive in that if Joe is larger than Sue and Sue is Larger then Sam, then Joe is larger than
Sam.

[OWL] TransitionObjectProperty

Direct Supertypes

Property Constraint

19.21 Association Property Type
Relationship defining the type of a property.
Association Ends

/" is of type : Type [1] Redefines: constrains: Identifiable Entity

A required type of a thing bound to a property.
Note that the type may be inferred based on the value of <prerequisite type>.
[OWL] rdfs:range,

152 Semantic Modeling for Information Federation (SMIF) 0.9

/ properties of type : Property Type Constraint [*] Redefines: constrains: Identifiable Entity
Properties typed by a type

19.22Class Property Type Constraint

A property type constraint defines the type(s) of a property.

All elements bound to a property must have the type <is of type>. <is of type> may be pre-existing or inferred based on
the value of <prerequisite type>.

Note that Property Type Constraint is a rule independent of the definition of a property to allow for the type of a
property to be refined in a more restrictive context.

[FUML] TypedElement.type: Note: A property type constraint applied to a property has the same semantics as a UML
TypedElement.

[OWL] Union(AllValuesFrom, SomeValuesFrom, DataPropertyRange, ObjectPropertyRange)). <is of type>
corresponds to rdfs:Range. <constrains> corresponds to rdfs:Domain (note that in an association type or relationship
type with two property types, the range will be the domain of the "opposite" property, if any).

Direct Supertypes

Property Constraint

Attributes

' prerequisite type : Boolean
If true, <is of type> is a prerequisite - the bound thing must be of the given type for the property to be bound. A non
prerequisite type will cause a binding to infer <is of type>, provided all prerequisite types have been satisfied.

Associations
gt of type : Type [1]
through association: Property Type

A required type of a thing bound to a property.
Note that the type may be inferred based on the value of <prerequisite type>.
[OWL] rdfs:range,

19.23Class Rule

A rule is a proposition that constrains one or more entities by limiting possible conditions or producing some effect.
Note that rules may or may not be defined in the same context that they hold within or constraint. This support the "open
world assumption" that a rule may be asserted outside of the scope of the rule or what the rule is constraining.

Direct Supertypes
Proposition

Associations

/s constrains : Identifiable Entity [*]
through association: Rule Constrains

The entity or entities constrained by a rule.
Where a rule constrains a context, all things contextualized by the context shall be subject to the rule.
Where there are no <constrains™> for a rule, the rule applies globally - to the universal context.

/ subsumes : Identifiable Entity [*]

Semantic Modeling for Information Federation (SMIF) 0.9 153

through association: Rule Subsumption

When a rule subsumes another the subsumed rule will not apply (fire) if the <subsumed by> rules applies
(fires).
Where rules are also patterns, a rule may specialize another which will subsume the specialized rule as well as include
the generalized rule parts as parts of the specialized rule.

/ subsumed by : Identifiable Entity [*]
through association: Rule Subsumption

When rule is <subsumed by> another the subsumed rule will not apply (fire) if the <subsumed by> rules
applies (fires).

19.24 Association Rule Constrains

Relationship defining the entity constrained by a rule. Where no constrained entity is specified, all entities are
constrained with the scope of <holds within> are constrained.

Association Ends
/" constrains : 1dentifiable Entity [*]

The entity or entities constrained by a rule.
Where a rule constrains a context, all things contextualized by the context shall be subject to the rule.
Where there are no <constrains™> for a rule, the rule applies globally - to the universal context.

/ constrained by : Rule [*]
Rules applying to an entity.

19.25Association Rule Subsumption

Relationship defining rule subsumption. When a rule subsumes another the subsumed rule will not apply (fire) if the
<subsumed by> rules applies (fires).

Association Ends
/" subsumes : Rule [*]

When a rule subsumes another the subsumed rule will not apply (fire) if the <subsumed by> rules applies
(fires).
Where rules are also patterns, a rule may specialize another which will subsume the specialized rule as well as include
the generalized rule parts as parts of the specialized rule.

/" subsumed by : Rule [*]

When rule is <subsumed by> another the subsumed rule will not apply (fire) if the <subsumed by> rules
applies (fires).

19.26 Association Specialization

Relationship defining the specific type of a generalization constraint.

Direct Supertypes

Rule Constrains

154 Semantic Modeling for Information Federation (SMIF) 0.9

Association Ends
/" has specific : Type [1]
The specific type in a generalization rule.
[ISO 1087] generic concept: concept (3.2.1) in a generic relation (3.2.21) having the narrower intension (3.2.9)
[FUML] specific
[ISO11404] A subtype is a datatype derived from an existing datatype, designated the base datatype, by restricting the
value space to a subset of that of the base datatype whilst maintaining all characterizing operations. Subtypes
are created by a kind of datatype generator which is unusual in that its only function is to define the relationship between
the value spaces of the base datatype and the subtype.
[OWL] Union(rdfs:subClassOf, SubObjectPropertyOf, SubDataPropertyOf)

/s has generalization : Generalization Constraint [*]

Generalization rules for a type

19.27Class Type Constraint

A constraint of a type, including Relationships types.

Direct Supertypes
Rule

Associations
e constrains : Type [1] Redefines: constrains:Identifiable Entity

19.28 Association Unique Set

Relationship defining the set of properties that uniquely identify an instance of the constrained type.

Association Ends
e has unique : Property Type [1..*] Redefines: constrains: Identifiable Entity
The set of involved properties within a type that uniquely identify an individual.

e has uniqueness constraint : Uniqueness Constraint [*] Redefines: constrains: Identifiable Entity

Uniqueness constraints for a property.

19.29Class Uniqueness Constraint

A constraint that, within the <constrains> type the rule applies to, the set of instances bound to the set of types in the
"has unique" relation must be unique and serves to define the "identity" of each individual.

Note: Uniqueness may be used to define a "key".

[OWL] HasKey where CE (subject class expression) is <constrains> and <has unique> is
Union(ObjectPropertyExpression, DataPropertyExpression)

Direct Supertypes
Type Constraint

Attributes

© is primary identity : Boolean
A uniqueness constraint that can be interpreted as a "primary key", the identity of an entity.

Semantic Modeling for Information Federation (SMIF) 0.9 155

Associations

e has unique : Property Type [1..*]
through association: Unique Set

The set of involved properties within a type that uniquely identify an individual.

156 Semantic Modeling for Information Federation (SMIF) 0.9

20 SMIF Conceptual Model::Situations

A situation is a particular configuration of things and their relations including spatial, temporal, and logical connections
between those things valid over a period of time. Situations form the basis of all complex, time dependent entities.

20.1 Diagram: Situations

package Situations] Stlalorsy «Eficent «Sufficient»
Bdert o Type +categprizes| Thing Mwm
-1 1
{redefines contextualizesy . izes, - T
«Suffident»
{subsets in context of}
1 +has type
e [
o * | +boudin
Properties Property Bindli
0.1 Relztionship » A1 ’ -
n context . * |+has bindng

« Hs of type |;Cm et Terrparal Entity {redefines categorizes}
{chein = constrained +halds within| *

by, is of type} «Suffident»

Assertion
+has property «Suffident»
Property Type +asserts|*
1 +bound by 7t
{redefines has type}
St | [ctet]
* {redefines categorizes} o
{oorplete, disiaint}
Situation Kinds
[drtersection» «Intersection»
Pattem Actual Situation
ii. Situations

20.2Class Actual Situation <<Intersection>>

An actual situation is an individual situation that actually exists, happened in the past or may exist in some possible
world, not a template or process definition. Such situations must exist for a time interval, however there are no
constraints on such a time interval - from an instant to the life of the universe.

DTV: Occurrence: state of affairs that is a happening in the universe of discourse

Semantic Modeling for Information Federation (SMIF) 0.9 157

dass Aciual Situation] [E Actual Situation y

Identifiable Entity

I

Termporal Entity

1

Situation Actual Entity
TStLHion

«Intersection»
Actual Situation

I

Relationship Record Characteristic Binding Pattern Match

e Actual Situation

Direct Supertypes

Actual Entity, Situation

20.3Class Situation

A situation is an identifiable entity composed of an arrangement of entities and the relations between them over a time
interval. Situations are propositions and may be asserted as true or false in some context. Situations may change over
time, unless otherwise constrained. As an identifiable entity, situations may participate in relationships, thus situations
are "first class" elements in SMIF.

[SBVR] "State of affairs"
[SOWA1999] Nexus

Direct Supertypes
Context, Lexical Scope, Proposition, Temporal Entity

Associations
e <<Sufficient>><<Restriction>> : Situation Type [1..*] Subsets: has type:Type

/ matched by : Pattern Match [*]
through association: Situation Matches

Pattern matches that match the subject situation.

20.4Class Situation Type

A situation type defines a kind of identifiable arrangement of individuals, assertions and the relations between them over
a timespan. As an identifiable entity, situations may participate in other situations and relationships by being bound to
properties of those situations or relationships with bindings, thus situations are “first class” entities in a SMIF model.

158 Semantic Modeling for Information Federation (SMIF) 0.9

The roles or behaviors things (any entity or value) may play in a situation are identified as properties of the situation
type.

Entity types and roles may also be situation types.

Syn. Type of a state of affairs.

A situation type may have properties such that instances, may bind things to structures based on properties.

Things may be bound to a structure (i.e. play a role in the structure) via properties. Things bound to properties of a
structure may change over time, unless otherwise constrained.

[DTV] situation kind: state of affairs that may or may not happen in some possible world

Direct Supertypes
Entity Type

Associations
/ <<Sufficient>><<Restriction>> : Situation [*] Redefines: categorizes:Thing

Semantic Modeling for Information Federation (SMIF) 0.9 159

21 SMIF Conceptual Model::Top level

The top level objects provide the foundation for all objects in a SMIF model

21.1Diagram: Top Level

package Toplevel[Top Levdy ot
«S] IIG »
Thing +categarizes
* {redefines contextualizes}

«Suffident»
“+oontextudizes BExtent of Context
T * Bxtent of Type
redefines cat izes)
Value |“ ifiable Entity { egorizes)
| A "
o tesserts|* * |+negates
+negated
wthin Cortext
Negation * 1.*
+holds within +in context of
Assertion * T

[~] Sl e

«Intersection» «Intersection»
Pattem Actual Situation

VAN

{subsets has
type}

Relationship *
{redefines {subsets has
categorizes} type}

ji- Top Level

Diagram showing summary of top level classes and significant subtypes.

160 Semantic Modeling for Information Federation (SMIF) 0.9

21.2Class Actual Entity

An actual entity is an identifiable, temporal and individual person, specific object, process enactment, agreement, etc.
Actual Entities do not have to be physical, e.i. may denote social constructs. Actual entities are disjoint from types.

A more specific class of actual entity (e.g., Person) is intended to refine the classification of the individual thing.
Individuality (or selfhood) is the state or quality of being an individual; particularly of being separate from other
individuals and possessing identity. Actual entities typically have a lifetime and some individuals may change over that
lifetime. Individuals may have parts that together help define the individual but may change over time.

"Actual" does not imply current existence.

[ISO 1087] individual concept: concept (3.2.1) which corresponds to only one object

[UML] Loose correspondence with "InstanceSpecification". SMIF instances are direct instances of their types, there is
no "indirection" through value specification as their is in UML.

[Guizzardi] (individual concept)

[CL] Individual: one element of the universe of discourse

[DOLCE] Particular: particulars are entities which have no instances

[SOWA1999] Independent. Can be considered "Actuality" when including social constructs in [SOWA1999] Physical.

[OWL] Individual

dass AmaEﬂy[AmaEﬁtyDetaly

Temporal Entity

|

Actual Entity

«DOisjoint With» Type

«Facet Oh»

«Intersedtion» «Rde»
Actual Situation | | Infformation Source

e Actual Entity Detail

Direct Supertypes
Temporal Entity

21.3 Association Assertion

An assertion relationship between a context and the propositions asserted within that context. The <asserts> proposition
is asserted (defined as "true") for all things contextualized by the <holds within> context. Assertion of truth is not
absolute, it is relative to the context. For example, something could be asserted within a context where that entire
context is asserted to be false.

Semantic Modeling for Information Federation (SMIF) 0.9 161

Assertion is transitive.
[CL] Implication
[OWL] Assertion; Any [OWL] Assertion included in a graph (All assertions in an OWL graph are asserted by the graph)
Association Ends
/ asserts : Proposition [*] Redefines: categorizes: Thing

Proposition that is asserted (must be true) for anything contextualized by a context.
As types are a context, types may assert a proposition for their instances.

/" holds within : Context [*] Redefines: categorizes: Thing

Context in which a proposition is asserted (required to be true). Anything contextualized by the context is
subject to the proposition.

21.4Class Context

A <Context> is a grouping of <contextualizes> things that are related in some way.

A <Context> also <asserts> propositions that hold for all things the context <contextualizes™>, thus providing the link
between an assertion and the set of things asserted. Likewise a context <negates> propositions that are false within the
context.

Subtypes of <Context>, such as <Type> ascribe more semantics to the context as well as the things it <contextualizes>.
A context provides a binding between a set of propositions and the things those propositions apply to.

[CL] Sort: any subset of the universe of discourse over which some quantifier is allowed to range

[ISO 1087] concept field: unstructured set of thematically related concepts (3.2.1)

[SOWA1999] Mediating

162 Semantic Modeling for Information Federation (SMIF) 0.9

dass Context[|5 Context Detaly
Identifiable Entity
Context «Sufficient»
-+Hn context of BExtent of Context +oontextudizes Thing
1. *
«Sufficdent» «Sufficient»
-+hads within Assertion tasserts Proposition
{subsets in context of}
+evduates in Bxpression Context Wiml o |
0.1 {subsets contextudlizes} * |
+HReferenced soope Soope of Reference
T 1
T of Units Situation Lexical Reference
o || Namespaco | | Systemof s | | | S—
+referenced by
e Context Detail
Direct Supertypes
Identifiable Entity
Associations

e <<Sufficient>> asserts : Proposition [*]
through association: Assertion

Proposition that is asserted (must be true) for anything contextualized by a context.
As types are a context, types may assert a proposition for their instances.

/s contextualizes : Thing [*]
through association: Extent of Context

The set of things contextualized by a <Context>, or "in" the <Context> and therefor subject to the <asserts>
propositions of the <Context>.

/ negates : Proposition [*]
through association: Negation

Proposition that is negatively asserted (must be FALSE) for anything contextualized by a context.
As types are a context, types may assert or negate a proposition for their instances.

Semantic Modeling for Information Federation (SMIF) 0.9 163

21.5Association Extent of Context

The association between a context and the set of things contextualized by that context, defining the extent of the context,
a set.

[ISO 1087] extension: totality of objects (3.1.1) to which a concept (3.2.1)
corresponds

/" contextualizes : Thing [*]

The set of things contextualized by a <Context>, or "in" the <Context> and therefor subject to the <asserts>
propositions of the <Context>.

e in context of : Context [1..*]
A <Context> that contextualizes a thing making what it <contextualizes™> subject to the propositions referenced
by <has assertion> of the context.

A thing may be <in context of> one or more context.
[FIBO] hasContext

21.6Class Identifiable Entity

An identifiable entity is any identifiable thing other than values, this includes individuals, types, axioms, situations,
speech acts, information structures, etc.

Identifiable entities always have some kind of identity and may have identifiers. Note that identity is an abstraction that
may have representation in models as any number of identifiers, also known as a "sign".

[OWL] Entity type (Implied in section [OWL] 5.8) as an instance of rdfs:Class

164 Semantic Modeling for Information Federation (SMIF) 0.9

dass Identifiable Entityf [£] Identifiable Entity Datay
JAN
Value
«DOsjaint With»
«Sufficient» - -
+hes record Record of an Entity +about| Identifiable Entity
Record - ”
. «va:,.:' +thess preferred Prefered Idertification +preferred for
0.1 {subsets idertified by} {subsets Uehifies)
«Suffident» «Sufficient»
~+dertified by Hdentifies
* Identification 1
«Annatation Property» «Sufficient»
Definition Relationshi
Definition | "ooiedby P +defines
* {subsets hes metadata} {redefines metadata about}
«Sufficient»
NAue» +has name Naring +names
Nare |" g poeets identified by} 1.*
{redefines
identifies}
«Sufficient»
«Annotation Property» +rede staterment
«Rde» +has|authortative souroe . -
Information Source Saource of Informetion 1.
{subsets
{subsets has metadata} 3
1..* {subsets has type} {redefines categorizes}
«Sufficient»
Rue +oonsirained by Rule Constrains +oonstrains
«Annatation Property» . «Sufficient»
+wes stated in Assertion Staterrent +resutedin
* {subsets has metadata} {subsets metadata about]
«Annatation Property» «Sufficient»
+hes metadata Metadata relationship +Hretadata about
Metadata [*
{subsets has record} {subsets about}
«nvolves»
«Relationship» +has enti
Facet of Entity bindings for entity {redefines catbgarizes}
Property Binding |25 50dng +boundto
* Bound Subject 1 T
Tenrporal Entity
Grtad | | Propostion | | Seression Garted| [Aeperty O |

¢ ldentifiable Entity Detail

Direct Supertypes
Thing
Associations

Semantic Modeling for Information Federation (SMIF) 0.9

165

e <<Sufficient>> was stated in : Statement [*] Subsets: has metadata:Metadata
through association: Assertion Statement
Metadata representing the speech act, document or other record where a statement captured in a model was
made.
[OWL] rdfs:isDefinedBy

e has preferred : Identifier [0..1] Subsets: identified by:Identifier
through association: Prefered Identification

Default identifier to use for an entity.
Where multiple identifiers are preferred in differing context any method for selecting the most preferred identifier is
implementation specific and not specified by this standard.
[FUML] NamedElement.name: Note: An Identifier that is <preferred for> an entity is equivalent to the name of a named
element.

/ <<Restriction>> : Entity Type [1..*] Subsets: has type:Type

v <<Annotation Property>> defined by : Definition [*] Subsets: has metadata:Metadata
through association: Definition Relationship

An informal description of something.
[FIBO] hasDefinition
[UML] comment
[FUML] ownedComment

/ <<Sufficient>> identified by : Identifier [*]
through association: Identification

An identifier for an <Entity>.
[FIBO] hasDenotation

/ <<Annotation Property>> has metadata : Metadata [*] Subsets: has record:Record
through association: Metadata relationship

Metadata associated with (data about the information concerning) the subject entity.
[OWL] AnnotationProperty, annotationValue of Annotation Assertion

/ has name : Name [*] Subsets: identified by:Identifier
through association: Naming

A human meaningful name for an entity.
[FIBO] hasName: that by which some thing is known; may apply to anything

[OWL] rdfs:label

e has record : Record [*]
through association: Record of an Entity

A record about something.

v constrained by : Rule [*]
through association: Rule Constrains

Rules applying to an entity.

e <<Annotation Property>> has authoritative source : Information Source [*] Subsets: has metadata:Metadata
through association: Source of Information

Metadata representing the authority behind a statement - who or what made a statement captured in a model.

166 Semantic Modeling for Information Federation (SMIF) 0.9

/ has binding : Property Binding [*]
through association: Bound Subject
Bindings asserted for properties within a situation.

21.7 Association Negation

An assertion relationship between a context and the propositions negated (FALSE) within that context. The <negates>
proposition is asserted as FALSE for all things contextualized by the <negated within> context. Assertion or negation of
truth is not absolute, it is relative to the context.
[CL] Negation+Implication
Association Ends

/ negates : Proposition [*]

Proposition that is negatively asserted (must be FALSE) for anything contextualized by a context.
As types are a context, types may assert or negate a proposition for their instances.

/ negated within : Context [*]

Context in which a proposition is negated (required to be FALSE). Anything contextualized by the context is
subject to the proposition.

21.8Class Proposition

A proposition is statement, or condition with a truth value (true or false) that can be determined or asserted with some
level of confidence (assessment of confidence being outside of this specification).

All "facts", statements, speech acts, relationships and rules are propositions.

Propositions may be asserted to be true within a context which they <holds within>.

For a situation, the proposition is true if the situation is actual (i.e., takes place, obtains).

[SBVR] the state of affairs is posited by the proposition and if the state of affairs were actual, the proposition would be
true

[CL] Sentence: unit of logical text which is true or false, i.e. which is assigned a truth-value in an interpretation
[SOWA1999] Proposition

dass Proposition] [Proposition Detay
Identifiable Entity
«Sufficient» «Sufficient»
+asserts Assertion +holds within
Proposition | . Cortext
Situation Rule

Semantic Modeling for Information Federation (SMIF) 0.9 167

Direct Supertypes

Identifiable Entity

Associations

e <<Sufficient>> holds within : Context [*]
through association: Assertion

subject to the proposition.

subject to the proposition.

e Proposition Detail

Context in which a proposition is asserted (required to be true). Anything contextualized by the context is

/s negated within : Context [*]
through association: Negation

Context in which a proposition is negated (required to be FALSE). Anything contextualized by the context is

/ qualified within : Proposition Variable [0..1]
through association: Qualified Proposition

21.9Class Temporal Entity

A temporal is anything that has a timespan. Temporal things may have temporal relationships with other temporal things.

Note that relationships defined for [DTV] Time Intervals may be specified for <temporal Entity> but are not specified in
SMIF.

[SOWA1999] Continuant

Direct Supertypes

168

Identifiable Entity

dass Terrporal Entityf [£ Tenporal Entity Detay

Identifiable Entity

|

Temmporal Erntity

I

Actual Entity

Situation

e Temporal Entity Detail

Semantic Modeling for Information Federation (SMIF) 0.9

21.10Class Thing

Any thing or value that does or may exist in any possible world. Thing is the supertype of all types and may therefore
participate in unbounded relations.
Instances of Thing are referred to as "a thing" in this model.

[IDEAS] Thing

[OWL] Thing

[ISO 1087] object: anything perceivable or conceivable
[FIBO] Thing

[Guizzardi] Thing

[FUML] Element

[SOWA1999] "T"

[OWL] rdfs:Resource

dass Thing[[Thing Daaly
«Suffident»
i BExtent of Context H
Thing “+oontextualizes +n context of :|:
«Suffident» 1.
+categorizes Extert of Type +Hestype
« « Type
{redefines {subsets in oonte&]d}
contextudizes}
+has equal Equdlity Constraint +has equality, -
- - Equality
+has vaue Gonstant Value +referenced by
1 - Constant Reference
«Suffident»
:deﬁn&s +deﬁer iN I exical S
{subsets {subsets in context of}
ocontextudizes}
+states Statement +stated by 0.1
*{s.bsasassefts, subsets defines} {subsets defined in, subsets hdds within}
«Suffident»
-+Hoinds Bound Individual
1
+bound in *
Vaue Identifiable Entity Property Binding
e Thing Detail

Associations

»" defined in : Lexical Scope [1] Subsets: in context of:Context
through association: Definition

Lexical scope defining model elements.
[UML]owner

/ in context of : Context [1..*]
through association: Extent of Context

A <Context> that contextualizes a thing making what it <contextualizes™> subject to the propositions referenced
by <has assertion> of the context.

Semantic Modeling for Information Federation (SMIF) 0.9 169

A thing may be <in context of> one or more context.
[FIBO] hasContext

/s has type : Type [1..*¥] Subsets: in context of:Context
through association: Extent of Type
A type that holds for something.
Things may have multiple types and these types may change over time.
The <categorized> thing satisfies the constraints of the <has type> type.
[FIBO] isClassifiedBy
[OWL] rdf:type

" stated by : Lexical Scope [0..1] Subsets: defined in:Lexical Scope holds within:Context
through association: Statement

<stated by> is a lexical scope that both defines and asserts a model element.

170 Semantic Modeling for Information Federation (SMIF) 0.9

22 SMIF Conceptual Model::Types

Types provide for ways to categorize anything based on what it is, the roles it plays or the phases it may be in.
Something may be categorized by any number of types (multiple classification assumption).

22.1Diagram: Type-instance

package Types[Type—insta‘\oey

Thing

+categorizes| *
«Suffident»
BExtent of Type

+astype|1.” «Equivalent Property»
Type fchein = constrained by, has spedific

* +has supertype

The fundamental type-instance
relation is a foundation of SIMF.

kk. Type-instance

Semantic Modeling for Information Federation (SMIF) 0.9 171

22.2Diagram: Types

«Sufficient»
+categorizes| N Thing ‘
{redefines contextualizes} |
“+oontextudlizes| *
Extert of Type «Sufficient»

’ ; ifiable Entity ﬁredeﬁr&ecategoﬁz%}

\ Extent of Context T -

+in context of | 1..* «Sufficient» «Sufficient»
5 | Hholds within Assertion +asserts[o A ition
1.*
+has type Type
{subsets in context of}

#m&pertypeT* {redefines categorizes}
{chain = constrained by, has spedfic}

’ Value Type ‘ ’Hq)e‘tyType‘ ‘IrtersedionType H Union Type | ’

1..%| {subsets has
type} ’ Property Onner Type ‘

[
e [y [] [|

Value

’GﬂadserislicType‘ ’ mcordType‘ ’ Relationship Type ‘

Il. Types

22.3Class Entity Type

A type of an identifiable entity. All concrete entity instances must have at least one entity type. Entity type may be mixed
with other types to fully define an entity.

[FUML] Classifier

[Guarino1994] Substantial or Pseudo-Sortal (Substantial being concrete)

[Guizzardi] A Rigid Universal.

(Rigid Universal): A universal G is rigid (or modally constant) iff for any w,wle W 3. extw(G) = extw(G) Putting
definitions 4.1 and 4.3 together, we have that for any rigid universal G the following is true 4. ext(G) = extw(Q), for all
w €W A rigid universal is one that applies to its instances necessarily, i.e., in every possible world. Every substance
sortal G is a rigid universal.

172 Semantic Modeling for Information Federation (SMIF) 0.9

[OWL] rdfs:Class (as Entity Type does not include values). However, non=primitive values are typically represented as
rdfs:Class

Direct Supertypes
Type
Associations
/" <<Restriction>> : Identifiable Entity [¥] Redefines: categorizes:Thing

22.4 Association Extent of Type

The relation between a type and the things that type categorizes, the instances which defines the extent of the type, a set.
[IDEAS] typelnstance: A couple that asserts that a Thing is a member of a Type.

[Guizzardi] (Extension functions): Let W be a non-empty set of

possible worlds and let w €W be a specific world. The extension function extw(G) maps a universal G to the set of its
instances in world w. The extension function ext(G) provides a mapping to the set of instances of the

universal G that exist in all possible worlds, such that ext(G) = U wEW w ext (G)

[OWL] ClassAssertion

Direct Supertypes

Extent of Context

Association Ends
/ categorizes : Thing [*] Redefines: categorizes: Thing
The set of things described by a type, the "extent" of the type.

The thing a type <categorizes> is subject to the <has assertion> propositions of the type.
[FIBO] classifies

/" has type : Type [1..*] Redefines: categorizes: Thing

A type that holds for something.
Things may have multiple types and these types may change over time.
The <categorized> thing satisfies the constraints of the <has type> type.
[FIBO] isClassifiedBy
[OWL] rdf:type

22.5Class Intersection Type

An intersection is a type that has an extent which is the complete intersection of the extents of all supertypes.
Intersection is a stronger statement than a subtype as a subtype may not be a complete intersection.

[MathWorld] The intersection of two sets A and B is the set of elements common to A and B. This is written A
intersection B, and is pronounced "A intersection B" or "A cap B."

Direct Supertypes
Type

Semantic Modeling for Information Federation (SMIF) 0.9 173

22.6Class Type

A <Type> is a categorization of any thing based on specific criteria. The specific criteria may or may not be formalized
in a model.

A <Type> <categorizes> a set of <Thing>s which comprises the "extent" of the type.

A <Type> is a <Context> where the things it <categorizes> are <in the context> of the <Type>.

[IDEAS] Type: A set (or class) of Things.

[ISO 1087] general concept: concept (3.2.1) which corresponds to two or more objects (3.1.1) which form a group by
reason of common properties

[FIBO] Classifier: a standardized classification or delineation for something, per some scheme for such delineation,
within a specified context

[FUML] Type

[CL] Type:: logical framework in which expressions in the logic are classified into syntactic or lexical categories (types)
and restricted to apply only to arguments of a fixed type

[Guarino1994] Discriminating Predicate

[OWL] Union(rdfs:Class, rdfs:Datatype)

Direct Supertypes
Context, Lexical Scope

Associations
e has supertype : Identifiable Entity [*] Redefines: categorizes:Thing

Supertypes(s) of a type as defined by generalization rules.

All statements made about the supertype are true for the subtype. The extent (categorizes) of the subtype is a subset of
the extent of the supertype.

Has supertype is a a derived association based on generalization rules.

/s categorizes : Thing [*] Redefines: contextualizes: Expression Context
through association: Extent of Type

The set of things described by a type, the "extent" of the type.
The thing a type <categorizes> is subject to the <has assertion> propositions of the type.
[FIBO] classifies

/ has property : Property Type [*]
through association: Properties Relationship

A property of a structured type such that there may be bindings of a thing to instances of the structured type
with reference to the property which defines the semantics of the bound thing withing the context of the structure.
[FUML] feature
[UML] memberEnd. attribute (of classifier).

e <<Sufficient>> asserts pattern : Pattern of Type [0..*¥] Subsets: asserts:Proposition
through association: Subject of Pattern Relationship

A pattern asserted for all instances of a type. Where the pattern includes parts, the type defines a composition.

v has covering : Covering Constraint [*]
through association: Covering Constraint

Covering constraints of a type.

e has specialization : Generalization Constraint [*]
through association: Generalization

174 Semantic Modeling for Information Federation (SMIF) 0.9

Specialization rules for a type.

/ has multiplicity : Multiplicity Constraint [*] Subsets: constrained by:Rule
through association: Multiplicity Target

Multiplicity constraint of a type or property.

e properties of type : Property Type Constraint [*]
through association: Property Type

Properties typed by a type

v recording types : Record Type [*]
through association: Subject of Record Type

Record for a thing.

/s has generalization : Generalization Constraint [*] Subsets: constrained by:Rule
through association: Specialization

Generalization rules for a type

22.7 Class Union Type

A Union is a type that has an extent which is the complete union of the extents of all types that specialize the Union.

[FIBO] Logical Unions

[MathWorld] Given two sets A and B, the union is the set that contains elements or objects that belong to either A or to
B or to both. We write AE B

[OWL] ObjectUnionOf(ObjectUnionOf, DataUnionOf)

Direct Supertypes
Type

Semantic Modeling for Information Federation (SMIF) 0.9 175

23 SMIF Conceptual Model::Values

The values package defines the concepts of values and quantities expressed in units.

Values may be differentiated from entities in that values have no independent lifetime or "identity" other than the value
its self. E.g. the number 5 "just is" and can't be changed. Properties and relations referencing values can, of course,
change but the values are constant.

The failure to properly express units in data models often results in errors, inefficiencies and risk. Translation and
federations between models, schema and data sources that is not cognizant of the units used would be even more error
prone and risky. For example, what does “Speed limit 50” mean? For these reasons the SMIF language provides specific
support for specifying quantity kinds and unit types in conceptual, logical and physical models. The SMIF mapping
rules may then perform the appropriate unit conversions.

The foundation of information specification in SMIF at all levels is the type system. Types specified for all properties
and relations involving values must match the types of the related values. The concepts of units and values as defined in
"VIM" [JCGM 200-2008] is used as the basis for defining the types used in SMIF to guarantee type safety of quantities
across different representations. Since many existing models and schema do not include well defined units some effort
may be required to find and then specify the implicit units based on documentation, SME interviews or inspection of
data or source code. It is recommended that the units used by external models and schema be determined prior to
attempting federation and integration of information based on those models or schema.

VIM [JCGM 200-2008] concepts of quantities and units

VIM defines

e quantity: property of a phenomenon, body, or substance, where the property has a magnitude that can be
expressed as a number and a reference [ed. to a unit]

e kind of quantity (kind): aspect common to mutually comparable quantities

e measurement unit (unit): real scalar quantity, defined and adopted by convention, with which any other quantity
of the same kind can be compared to express the ratio of the two quantities as a number

SMIF concepts of quantities and units
SMIF uses the VIM concepts to define "quantity values" and types to capture the quantity kind and unit. Types are
defined for each Unit. The goals for this type based approach are:

e That it is clearly grounded in semantics as defined in VIM

e That a type may be used to specify the range of a property or relation involving unit based values.

e That a quantity value (e.g. 5 grams) be representable as a simple number with a type.

e That there is a clear type hierarchy starting with a representationally independent type in a conceptual model
(e.g. mass) that can be further specialized to a specific unit in a logical model (e.g. grams) and further
specialized to be represented by a physical data type (e.g. “double”).

e That external models and schema may have unit specifications asserted without changing the schema.

e That a quantity of an entity be able to be referenced without a specific quantity value being known (e.g. John’s
weight).

e That systems of units such as [[SO-80000] or [OMG QUDV] (A part of SysML) be able to be directly
referenced as the definition of a unit.

SMIF defines three types to realize the above goals: Quantity Kind, Unit Type, Base Unit Type. SMIF also defines
Quantity Values, which are instances of unit types.

In VIM a quantity has a magnitude that is expressed as a number and a reference. The SMIF quantity value is the
numeric value of such a quantity where the reference is specified by the “unit reference” property of the quantity value’s
type. The quantity value’s type is a “Unit Type”. The Unit type has attributes for converting a unit to a base unit, a
symbol and a unit reference. Based on VIM the unit reference may be “a measurement unit, a measurement procedure, a
reference material, or a combination of such” and is specified with a description that contains reference information. In
summary, the reference of a SMIF quantity value is determined indirectly through its unit type. A quantity value has

176 Semantic Modeling for Information Federation (SMIF) 0.9

exactly one unit type and exactly one Quantity Kind. A quantity value expressed in any unit of the same quantity kind
may be converted to any other unit of the same quantity kind.

This type-based sapproach allows specification of a property at the conceptual (quantity kind) logical (unit type) or
physical (unit type with a numeric type) levels. Such specifications use the same type-based approach used for other
aspects of the models. Given this information a SMIF implementation may correctly and reliably convert between
compatible types regardless of representation. Please see the specification of the value types, attributes and relationships
for more detail.

Example:
5. A specification for a road segment has a property “Speed limit”.

6. The type of this property in a reference conceptual model is “Speed:Quantity Kind”.

7. Awunit “Kilometer per Hour:Unit Type” is defined as a subtype of “Speed:Quantity Kind” with a “unit reference” of
“[ISO-80000.4] Kilometer per Hour”. Note that quantity kinds and unit types would normally be defined in
reference models that correspond to a “system of units”.

8. Miiles per hour is also defined as a subtype of Speed.

. Aphysical schema defines “Speed-KPH: Integer”.

10. A SMIF mapping rule maps “Speed limit” to “Speed-KPH” and asserts a type of “Kilometer per Hour” on the
“Speed-KPH” end.

11. A data file defines a road “Route One” with a speed limit of 100:KPH-Int.

12. When converted to a U.S. application this speed limit of route one can be viewed as 62:MPH-Int.

Semantic Modeling for Information Federation (SMIF) 0.9 177

23.1Diagram: Values

|

|

=]
Type A
JAN
«Disjoint With»
subsets has t .
e | | -
1.* {redefines categorizes} |
T ‘X«E(}.Ivde’t To»
«Value» «Value» «Value»
Unit Value Data Value Structured Value
hasVaue : Measurement Value) {redefines categorizes}
/ * {redefines categorizes}
«Value» |
Scalar Quantity
Property Onner altributes «\Value»
Tvpe hasVaue : Number{redefines hasValue} Priritive Value «Value»
A Atributes Measurerment Value
+value text : String [0..1] A
’ Structured Value Type ’ ’ Quantity kind) | | |
«Sufﬁ(_]e_nt» «alue» «\Value» «Value»
{subsets has type} 1 fredefines has supertype} «Restrictio» Text Boolean | Nureric
{subsets has type}
«Sufficent» 1 . .
«Restriction» it Type «BEquivdent To» | «Equivaent To» T
ratio : Real Nurber «Value»
offset : %N‘"m ’ «prirvitive» ’ «prirmitive» N‘n;:a'
unit reference : Definition [0..1] String Boolean
“+unit of system| * o
«Sufficient» |
{redefines in context of}
s i
Base Unit Ty
T Integer Real Nurmber
«Sufficient»
+defined within system 0..1 «Equivalent Tox, «Equivalent To,
Systemof Units
{subsets in context of} Referenced System of Units
«prirmitive» «prirritive»
Integer Real
«\Vaue» «\Value»
FALSE : Bodlean TRUE : Boolean

mm. Values

23.2Class Base Unit Type

One unit type of a quantity kind may be marked as the base unit within a system of units. The base unit provides the
basis for conversions between units of the same quantity kind. The base unit always has a ratio of one and an offset of

Z€ro.

Type of a [JCGM 200:2008] measurement unit that is adopted by convention for a base quantity

[FIBO] (type of) Base Unit: a measurement unit that is defined by a system of units to be the reference measurement unit

for a base quantity

There ma be at most one base unit for a quantity kind within a system of units.

178 Semantic Modeling for Information Federation (SMIF) 0.9

Direct Supertypes
Unit Type

23.3Class Quantity kind

[JCGM 200:2008] A Quantity Kind is an aspect common to mutually comparable quantities represented by one or more
units. Units with a common quantity kind may be algorithmically converted to any other unit of that quantity kind. e.g.
temperature.

Quantity kinds are a supertype of unit types which are then a type of all quantity values, Quantity values are mutually
comparable with all other quantity values categorized by the same quantity kind.

[FIBO] QuantityKind: a categorization type for “quantity” that characterizes quantities as being mutually comparable

[DOLCE] Quality Space

Direct Supertypes
Value Type

23.4 Association Referenced System of Units

Relationship between a system of units and the set of unit types defined within that system.

Direct Supertypes

Extent of Context

Association Ends
/s defined within system : System of Units [0..1] Subsets: constrained by:Rule
The system of units in which a unit is defined and is the basis for ratio and offset.

non,

By default the system of units is "si": http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail ics.htm?
csnumber=30669

v unit of system : Unit Type [*] Subsets: constrained by:Rule
Unit type defined within a system of units

23.5Class Scalar Quantity <<Value>>

Direct Supertypes
Unit Value

Attributes

 hasValue : Number
The value of a quantity that, when multiplied by the unit defined in a subtype of quantity kind, specifies a measurement

value such as 3 Meters.

23.6Class Structured Value <<Value>>

A value that may have sub-elements (owned properties) defined as "structure property type".

Semantic Modeling for Information Federation (SMIF) 0.9 179

Direct Supertypes

Property Owner, Value

Associations
e <<Sufficient>><<Restriction>> : Structured Value Type Subsets: has type:Type

23.7 Class Structured Value Type

A structured value type is a type of value that has parts represented as properties - also used for "data types" and forms.

Direct Supertypes
Property Owner Type, Value Type
Associations

/s <<Sufficient>><<Restriction>> : Structured Value Redefines: categorizes:Thing

23.8Class System of Units

[JCGM 200:2008] A set of base units and derived units, together with their multiples and submultiples, defined in
accordance with given rules, for a given system of quantities.

[FIBO] SystemOfUnits: a set of measurement units associated with a system of quantities, together with a set of rules
that assign one measurement unit to be the base unit for each base quantity in the system of quantities and a set of rules
for the derivation of other units from the base units

Direct Supertypes
Context

Associations

/ <<Sufficient>> unit of system : Unit Type [*] Redefines: in context of:Context
through association: Referenced System of Units

Unit type defined within a system of units

23.9Class Unit Type

A Unit type is a type of a quantity value referencing a specific unit. A Unit Type a required type of a property
representing a quantity.

Each quantity value has a reference as defined by the "unit reference" property of the quantity value's type.
[JCGM 200:2008] A Unit is a real scalar quantity, defined and adopted by convention, with which any other quantity of
the same quantity kind can be compared to express the ratio of the two quantities as a number. e.g. Degrees Centigrade,

Miles.

Each unit type represents refinement of a quantity kind using generalization and is thus substitutable for that quantity
kind. Typically quantity kinds are used in conceptual models and unit types in physical or logical models.

Unit types may only subtype quantity kinds or other units.

Note that unit types are not units, but the type of quantity values expressed with respect to a common unit as defined in
[JCGM 200:2008].

180 Semantic Modeling for Information Federation (SMIF) 0.9

[IDEAS] MeasureCategory: A MeasureType whose members are recognized types of Measurelnstance.

Direct Supertypes
Value Type

Attributes

 ratio : Real Number
The multiplier by which to multiple the referenced unit to convert to the base unit within a system of units.

< offset : Real Number
The difference between zero in the referenced unit and zero in the base unit after the ratio is applied within a system of

units.

< symbol : Text
The accepted symbol for the unit referenced by the unit type

2 unit reference : Definition [0..1]
The unit reference is the reference to a unit shared by all quantities values that are instances of a unit type.

[JCGM 200:2008] A reference can be a measurement unit, a measurement procedure, a reference material, or a
combination of such. For magnitude of a quantity.

Typical references include ISO 8000 and OMG QUDV.

Associations
7 Quantity kind [1] Redefines: has supertype:Type
<<Sufficient>><<Restriction>> : Unit Value [*] Redefines: categorizes:Thing

/ <<Sufficient>> defined within system : System of Units [0..1] Subsets: in context of:Context
through association: Referenced System of Units

The system of units in which a unit is defined and is the basis for ratio and offset.

By default the system of units is "si": http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail ics.htm?
csnumber=30669

23.10Class Unit Value <<Value>>

A unit value is a numeric magnitude with a unit type that may be used as the value of a quantity property as defined by
[JCGM 200:2008]. The reference of the quantity is defined by the "unit reference" property of the Unit Type.

e.g. Scm is an instance of the unit type "Centimeter"
Each unit value has exactly one UNit Type as a type.

In a physical model a quantity value must have a type that specifies its unit (e.g. "Gram"). The magnitude shall be
expressed using "hasValue"

[JCGM 200:2008] A quantity is a property of a phenomenon, body, or substance, where the property has a magnitude
that can be expressed as a number and a reference.

Note: A quantity as defined here is a scalar. However, a vector or a tensor, the components of which are quantities, is

Semantic Modeling for Information Federation (SMIF) 0.9 181

also considered to be a quantity.

[IDEAS] ScaleMapping: A CoupleType whose members are all the couples linking MeasurePoints to RealNumbers. The
CoupleType (i.e. the set of couples) represents the scale.

[FIBO] QuantityValue: number and measurement unit together giving magnitude of a quan-tity

[Guizzardi] (quale): A point in a n-dimensional quality domain

Direct Supertypes

Value

Attributes

© hasValue : Measurement Value

The value of a quantity that, when multiplied by the unit defined in a subtype of quantity kind, specifies a measurement
value such as 3 Meters.

[OWL] rdf:value restricted to abstract quantity

Associations
/s <<Sufficient>><<Restriction>> : Unit Type [1] Subsets: has type:Type

23.11 Class Value

A Value is an atomic. immutable piece of information without a specific lifetime or identity independent of the value.
Values include numbers, strings and other atomic "primitive" data. Values also include structured values, which are
immutable.

In UML values may be defined by the name of an instance specification with a value type.

[IDEAS] Representation: A SignType where all the individual Signs are intended to signify the same Thing.

[ISO11404] The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of
datatype generators may require the syntactic designation of specific values of a datatype.

[OWL] data values

Direct Supertypes
Thing

23.12Class Value Type

A type categorizing values where a value is an atomic piece of information without a specific lifetime or identity
independent of that value. Values include numbers, strings and other atomic "primitive" data.

[IDEAS] RepresentationType: A Type that is the Powertype of Representation.
[FUML] DataType

[ISO11404] datatype: set of distinct values, characterized by properties of those values, and by operations on those
values

[OWL] rdfs:Datatype (Note that some values are represented as OWL classes)

182 Semantic Modeling for Information Federation (SMIF) 0.9

Type

e <<Restriction>> : Value [*] Redefines: categorizes:Thing

7 SMIF UML Profile (Normative)

This section defines the UML profile for conceptual modeling and mapping. In order to improve UML’s suitability for
modeling real-world concepts, this profile interprets standard UML with semantic extensions, as detailed below:

71 Concept Modeling Profile Semantics

A concept[CC1] model can be expressed in UML with the concept modeling profile. The profile defines the
interpretation of UML concepts used, extends UML concepts with “stereotypes” and makes some UML semantics more
specific to concept modeling. While there are some extensions, every effort is made to use “generic UML” class
diagrams, as they are well understood and supported. [CC2] It only provides stereotypes to extend UML to make concept
models more expressive. For example, without complex OCL constraints, UML normally has no way to express that, in
the context of some class, some values must be of some type, all values must be of some type, or that the property chain
has father * has brother is equivalent to the property has uncle. Other examples of extensions include Roles and Phases
to describe how entities may be classified in different context or over time. These extended notions are introduced here,
in subsequent sections. Readers are referred to the UML specification and the many books and courses on UML for an
in-depth treatment of generic UML.

This section is intended to define the semantics of UML used in this specification to represent concept models. [CC3] The
subset of UML used for concept modeling is primarily that known as “Class models”, the most commonly used part of
UML. Our scope further narrows what we utilize to exclude behaviors and methods — elements used for object oriented
design. Those elements may be present, but they are ignored for the purposes of concept modeling.

The[cc4] goal of a concept model is to unambiguously define durable conceptualizations of the real or an imaginary
[ccs] world. One can think of a concept model as describing a "subject area", which can be as small or large as desired
(e.g., the concepts across the entire financial industry, or merely the concepts within one organization). Concepts are, of
course, the foundation of a concept model. Concepts are how we think about the world. They are modeled as
combinations of classes, datatypes, enumerations, associations, and properties. A related goal of a concept model is to be
as non-technical and business-friendly as possible. That means that names for concepts should contain spaces rather than
what’s called “CamelCasedWords” or “Underscore Separated Words”. It is the job of the transformations to convert
those names into lexemes that are acceptable to more technical tooling.

A concept model owned by subject matter experts is more durable than a data model or logical information model
designed with a particular system in mind. Thus, one definition of concepts and properties can be represented by
multiple logical information models, each optimizing for different technical goals. Note that there are multiple
interpretations of “logical model” that span from almost conceptual to near a data schema. Conceptual models can be
used to help federate any of these levels of abstraction.

A concept model is not an information or data model. When someone think about concepts, they think about real-world
things, not data structures or even natural language text about those things. These real-world concepts become the pivot
points around which we define and relate the many terms, languages and data structures that describe those things. For
example, every Person has biological mother one Person, which is essential to being a Person. Such concepts provide
criteria that narrow the definition of what a Person concept is, it does not specify that a system should store every

Semantic Modeling for Information Federation (SMIF) 0.9 183

person’s mother. What is contextual is our knowledge of that or our need to know it, which is the subject of an
information model. For another example, it would be reasonable for a concept model to assert that an eye has a
measurable visual acuity, but not to define how visual acuity will be represented within a computer as bits and bytes, or
how often visual acuity will be stored within a database. Such technical concerns should be elaborated in a data model,
which has elements that can be well defined by a concept model. Note, however, that things such as tables and columns
are valid concepts in their own right — as “data things”, but they are different from the real-world concepts they might
represent.

Concept models can be modular. A concept model may refer to things in a number of other concept models. This is
useful for refining another organization's concept model, separately maintaining overlapping concepts between
organizations or disciplines, or more easily managing smaller subject areas.

A concept model consists of a network of concepts with a simple essential structure. That structure is the definition of
classes, relations between them and their characteristics. Classes represent abstractions of “things” in our world —
including physical things like trees or people and “made up” things like agreements.

Other concepts connect those things - the relations between things are UML associations that have properties. Things
have characteristics such as weight or color. Things can also have properties that are attributes of a class. This basic
network of classes, associations, and properties forms the foundation of the concept model and defines the conceptual
framework and vocabulary of a domain. Each of these concepts may have names, which form the vocabulary of a
domain of interest. Various assertions are then made about these concepts and their connections that further refine the
semantics of those concepts — multiplicities of relationships, specializations between concepts, essential properties of
things, etc.

One of the fundamental ways we understand and organize concepts is their arrangement into hierarchies, where general
concepts are specialized to form more specific concepts within a specific context or with more specific characteristics. A
concept model can arrange all the fundamental elements into conceptual hierarchies using generalization relationships.
In contrast, another kind of hierarchy is a structural data hierarchy — where data elements contain other data elements. As
the purpose of a concept model is not representing data, data hierarchies are not part of a concept model, they are
typically part of logical information models that represent concepts. To allow for the many viewpoints that can exist for
any concept, a concept can be in many generalization hierarchies at the same time.

The following section defines how UML with conceptual extensions is used to represent the foundational network of
concepts using classes, associations, and properties. Additional constraints, expressed as rules, are then attached to this
basic framework to enhance semantic expression and the ability of automation to federate and analyze information about
those concepts.

711 Classes

Classes specify, or classify, a set of things, according to some set of rules or understanding. Classification is the essential
mechanism of conceptualization we use. Classes specify a set of things belonging to that class — this is called the class’s
extent. Each element of the class is an instance of that class —it is something the class classifies. Classifications may be
arranged in hierarchies.

In the UML concept model, a class is diagrammed as a box with a name at the top. In some cases, a definition is also
shown next to the box in a “note” form.

184 Semantic Modeling for Information Federation (SMIF) 0.9

An incident is a dangerous situation
that is happening or has happened
causing harm (detriment) to victims.
Kinds of incidents include attacks,
_|disasters and accidents. incidents
— are actualized risks.

" Incident |

Figure 5 Example of a Class

The above example shows the class “Incident” and its definition. It should be noted that a class is @ way to classify
something. It is natural to classify something multiple ways. For example, we may classify a situation as also being a
danger or, to someone else, an opportunity to do harm. This is different from many technology models (e.g. Java) that
only allow something to be classified in one way and the classification is fixed. The basic assumption of a concept
model is that unless specified otherwise, something may be classified in any number of ways and those classifications
may change over time.

71.2 Instances

While not usually used in the definition of the concept model, instances can also be shown in UML and are utilized to
illustrate examples or to define well known instances, like the “United States of America”. Since the model is
conceptual, instances of classes are proxies, or “signs”, for the “real thing” in the world — not data about them or other
technology artifacts.

T3¢ 1)

Instances are also shown as a box, but have a “:” separating the name of the instance from its classes.

Joe Smith :
Person, Victim

Figure 6 Instance Example

The above example shows a information about an instance named “Joe Smith” that is classified as a “Person” and a
“Victim”.

71.3 Class Generalization

Since Aristotle, classes have been arranged in hierarchies — from most general concepts to more specific ones. In UML
this is shown as a Generalization — an arrow with a solid line from the more specific concept to the more general. The
more general class is known as the Superclass (or Supertype) and the more specific the Subclass (or Subtype).
Generalization has some specific semantic rules:

. Everything that is true about the superclass must be true about all its subclasses
3 The extent of the subclass is a subset of the extent of the superclass
3 All properties and associations that apply to instances of a class also apply to instances of all its subtypes

In a concept model, a class may have any number of superclasses or subclasses. In contrast, some technologies (Like
XML Schema) limit the number of superclasses to one.

Semantic Modeling for Information Federation (SMIF) 0.9 185

lIndividual Entity |

==

Actor [Physical Entity |
|

I Ll]

| Automaton | 'Organizationll | “Animal | " tem | [Physical Location |

al yal

IPerIan '| ' D‘Iicev [|

Computer System | Conveyance |
-Network Address : Network identifier | —

Figure 7 Class Hierarchy Example

The above example shows a class hierarchy with multiple levels.

Note that all properties and associations defined for all superclasses of a class apply to that class. For that reason a
complete understanding of a class and its potential properties must include such superclasses.

A generalization is a subsumption relationship between a more general class and a more specific class. Every instance of
the specific class is also an instance of the subsuming general class. Because of this subsumption relationship, the
specific class inherits all of the necessary conditions of the more general classifier.

For a simple example, if we define “Futsal Team” as a subclass of “Soccer Team”, then the set of individuals in “Futsal
Team” must be a subset of the set of individuals in “Soccer Team”.

| Soccer Team
(Case 04)
||t iirsseoid S

Futsal Team |
| (Case 04)

Figure 8 Simple Generalization Example

There are four variations on generalization described in the following subsections. The first variation corresponds to the
example above: overlapping and incomplete subclasses. That variation is the default in both UML and concept
modeling.

7.1.31 Overlapping and Incomplete Subclasses

This variation is the default in both UML and in concept modeling. In this variation, an instance can be a member of the
superclass and / or any number of subclasses. In this sense, the classification of instances is “incomplete”—sometimes
an instance is classified by one or more specific subclasses, and sometimes it is not.

For example, the diagram below shows four instances (represented by white diamonds). One is an instance of
“Manufacturer”, one is an instance of “Windshield Manufacturer”, one is an instance of “Car Manufacturer”, and one is
an instance of both “Windshield Manufacturer” and “Car Manufacturer”.

186 Semantic Modeling for Information Federation (SMIF) 0.9

Manufacturer

Windshield Car
Manufacturer Manufacturer

o * o

Figure 9 An example of incomplete subclasses

In both standard UML and in concept modeling, incomplete and overlapping subclasses are shown with either no
notation, or with the equivalent notation {incomplete, overlapping} near the generalization arrow.

Manufacturer
(Case 27)
incomplete, overlapping}
gs1
[|
Windshield Manufacturer Car Manufacturer
(Case 27) (Case 27)

Figure 10 Incomplete and overlapping subclasses in standard UML notation

71.3.2 Disjoint and Incomplete Subclasses

This variation means that an instance can only be classified by at most one of the disjoint classes. Disjoint classes cannot
have any overlap in their instances.

The diagram below shows three instances. One is an instance of “Cat”, one is an instance of “Dog”, and one is an
instance of “Animal”. An instance classified as both “Cat” and “Dog” is impossible because there is no overlap between
the two classes. In the most basic terms, an instance of a “Cat” cannot be an instance of a “Dog”, and vice versa.

Semantic Modeling for Information Federation (SMIF) 0.9 187

Animal

Figure 11 Disjoint Subclasses

The following diagram shows an example of disjoint subclasses in standard UML notation. It shows that “Dog”, “Cat”,
and “Mouse” are all subclasses of “Animal”. In addition, the standard UML {incomplete, disjoint} notation declares all
of the subclasses to be incomplete and disjoint. Intuitively, an instance of the subclass “Dog” is an instance of the
superclass “Animal”, but it cannot also be an instance of the “Cat” or “Mouse” subclasses. It is incomplete because there
can be many more kinds of animals.

Animal
(Case 24)
{incomplete, disjoint}
gs2
I I I
Dog Cat Mouse
(Case 24) (Case 24) (Case 24)

Figure 12 Incomplete and disjoint subclasses in standard UML notation

The profile also supports a dependency stereotyped as «Disjoint With» to specify that anything can be disjoint, even if
they are not subclasses of a common super type. disjoint subclasses. For example, the class Animal has three disjoint
subclasses, Cat and Dog. [CC6]

kage Imported Ontologi [ITpor‘IIedOntobgﬂy

«Resources
Animal

(Imported Ontologies.Disjoint_rdf (from http://example/))

[

«Resources «Disjoint with» «Resources
Dog = - — — — — Cat
(Imported Ontologies.Disjoint_rdf (from hittp:#example/)) (imported Ontologies.Disjoint_rdf (from hitp:/fexample/))

CC7

Figure 13 Alternative «Disjoint With» Stereotype

188 Semantic Modeling for Information Federation (SMIF) 0.9

7133 Complete and Overlapping Subclasses

This variation means that an instance can only be classified by at least one of the subclasses; it cannot be classified by
only the superclass. Keep in mind that an instance of a subclass is indirectly an instance of a superclass at the same time.

For example, the following diagram shows three instances. One is an instance of “Windshield Manufacturer”, one is an
instance of “Car Manufacturer”, and one is an instance of both “Car Manufacturer” and “Windshield Manufacturer”.
Note that there can be no instance of “Manufacturer” that is not also an instance of one of the subclasses.

Windshield Car
Manufacturer Manufacturer

Manufacturer

CC8
Figure 14 An example of complete subclasses

The diagram below shows an example of complete and overlapping subclasses in standard UML notation. The diagram
shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and “Windshield Manufacturer” are all subclasses of
“Manufacturer”. In addition, the standard UML {complete, overlapping} notation declares that the subclasses are
complete and overlapping.

n rer

(Case 23)
a3

fcomplete, overlapping}
gs1

Steering Wheel Manufacturer Car Manufacturer Windshield Manufacturer
(Case 23) (Case 23) (Case 23)

CC9

Figure 15 Complete subclasses in standard UML notation

71.3.4 Disjoint and Complete Subclasses

This variation means that an instance can only be classified by one of the subclasses. The instance cannot be classified
as only the superclass, and it cannot be classified by two subclasses at the same time.

For example, in the subsequent diagram, two instances are shown. One is an instance of “Windshield Manufacturer”,
and one is an instance of “Car Manufacturer”. There can be no instance of “Manufacturer” that is not also an instance of
one of the subclasses, and there can be no instance that is classified as both a “Windshield Manufacturer” and a “Car
Manufacturer” at the same time.

Semantic Modeling for Information Federation (SMIF) 0.9 189

Car
Manufacturer Manufacturer

+ /

CC10

Figure 16 Disjoint and complete instances

The diagram below shows an example of disjoint and complete subclasses in standard UML notation. The diagram
shows that “Steering Wheel Manufacturer”, “Car Manufacturer”, and “Windshield Manufacturer” are all subclasses of
“Manufacturer”. In addition, the standard UML {complete, disjoint} notation declares that the subclasses are complete
and disjoint.

Manufacturer
(Case 28)
Fay

fcomplete, disjoint}

gs1
mﬁ!!!m !!!gggl Manufamgrgr r n rer ﬂ!ﬂgﬂg’ |g Mgnufa:mrer
(Case 28) (Case 28) (Case 28)

Figure 17 Disjoint and complete subclasses in standard UML notation

71.4 Properties

Properties represent qualities inherent in something, such as size, weight or a time. Each property has a “type” for the
kind of value that represents that quality. A property is a characteristic that an individual can have, or, as explained in a
subsequent section, an individual must have to qualify as a particular concept.

Most properties are relations between concepts, usually expressed as a verb phrase, such as "Heart comprised of
Chamber" or "Geographic Region identified by Address". This kind of property is generally drawn as a UML
association end, as part of a UML association.

Some properties are relations with data types, such as a standard UML Date, usually expressed as a prepositional phrase,
such as "Person born on Date" or a noun phrase, such as “Person birth date Time Point”. This kind of property is
generally drawn as a UML attribute, within an attribute compartment of the most general classifier that can have that
quality.

Animal

+birth date : Time Point
+death date : Time Point
+physical sex : Sex Kind
+current height : Length
+current weight : Mass

Figure 18 Example of Properties

190 Semantic Modeling for Information Federation (SMIF) 0.9

The above example shows that an animal has the qualities of birthdate, death date, physical sex, height and weight. Note
that these is no assumtion that these qualities may be known, required or that different data sources may or may not
agree on them — just that an animal has these qualties. Instances of properties are facts about the entity they describe. In
concept models, attributes are only used for qualities, never to relate different entities.

A much smaller number of properties represent metadata, usually expressed as a noun phrase, such as "Anything
description String" or "Anything see also URI". To represent metadata, this profile provides a stereotype called
«Annotation Property» that can be applied to a standard UML property in a concept model.

Note that because every class ultimately specializes the special class «Anythingy», when that <<Anything>> has
properties, those properties can be used by instances of any class. Moreover, classes or subclasses can have constraints
on the values of properties that only hold from that class and below in the generalization hierarchy. See subsequent
sections for further explanation.

71.5 Associations

Associations describe facts about how entities are related. Associations are shown as lines between the classes that have
related instances. At each end of the line is an “association end” property — the association end describes how the
instances of the class on the far end relate to those of the near end. If there are limits to how many instances may be
related, these are also shown. Since an association has at least two ends, the association may be read in any direction, but
is the same “fact”. The properties involved are considered “inverse properties”. [CC11] The association end properties are
typically verbs or verb phrases, but in some cases, such as when an association is reified as a class, the association ends
can become noun phrases[CC12] . In either case the name denotes the intent of the class at the other end of the line.

[Actor "|rperfnrmed by performs]‘]\ctivity |

Figure 19 Association Example

The above example says that there are relations between actors and activities such that the actor performs the activity
and the activity is performed by the actor. These are considered two ways to “read” the same fact. Like any fact,
relations may be true for some period of time or in some specific situation.

As can be seen in the example the ends of associations are typically verb phrases which can then be read as <the actor>
performs <the activity>. In other cases the ends are nouns in which case they represent a role being played. If a role
were used above instead of “performed by” it could read: <activity> has_performer <actor> (the 4as in this sentence
being implied by english grammar).

This combination of classes and associations with ends forms the basis for nouns and verbs common to human language.
The terms used for the nouns and verbs should be both consistent with their semantics and resonate with stakeholders —
sometimes this is a bit of a challenge.

In some cases the ends of the relation are sufficent to define it, in other cases it makes more sense to give the association
a name and its own definition. Associations and association ends, like classes, can be part of a hierarchy.

Note that unspecified multiplicities are interpreted as unconstrained: having a minimum cardinality of 0 and a maximum
cardinality of “*”,

7.1.6 Property and association end hierarchies

Like class hierarchies, attributes and association ends (we will just call both properties from now on) can also be
arranged in hierarchies of more or less specific properties. In UML, property hierarchies are represented using either
“Subsets” or “Redefines”. [CC13] What a property subsets or redefines is shown next to its name in in the diagram (Note
that by convention this is not shown on summary diagrams, only the primary definition of the property). If a property
completely subsumes the other in a particular context it uses a “Redefines” — that is the redefining and redefined
properties have the same set of values. If the more general concept can also be used in the context a “Subsets” is used.

Semantic Modeling for Information Federation (SMIF) 0.9 191

[occurrence |Performs performed by |

Actor
.I L =
|
I|| «Classifies»
|
Observation |IJ sbeerver | ——
_Ihas observation {redefines performed by} | Observer |

{subsets performs}

Figure 20 Example of Association End Hierarchy

The above example shows that the “has observation” and “observer” properties are specializations of the “performs” and
“performed by” concepts. The property “observer” redefines “performed by” — that is, an Observation always has an
observer, never a “performed by” any other kind of actor. Likewise “has observation” specializes “performs” but an

instance of Observer can perform other activities as well. Note the generalization between the associations is implied,
but is shown in this example for clarity.

Where a redefined or subset property has no name, it is an indication that the property type and/or multiplicity is merely
constrained in some way. No new properties or associations are actually defined for a constraint (more on this below).

71.7 Association Classes

In a concept model any “fact” may have properties. Of particular importance is the “provenance” of the fact — where the
fact came from and thus how much it can be trusted. Facts can also be time-bound, true for some period or only valid
within some context. Where an association may have additional specific properties or may participate in other
relationships, an “association class” is used. As implied by its name, an association class has both the properties of an
association and the properties of a class. More complex associations between things use association classes. An
association class is diagrammed as an association line and a class box with a dashed line between the association line
and its class. While the association line and box may seem somewhat visually distinct — they are the “same concept”.

| stakeholder Desirability
| net desirability : Metric

net harm : Metric

net benefit : Metric

net risk : Metric

1
zRoles | +desirability for \
Stakeholder

| Situation
+desirabilty of | starts on : Time Point
ends on : Time Point
confidence : Confidence Metric

Figure 21 Association Class Example

The above example shows the “Stakeholder Desirability” relation. Between any situation and any stakeholder there can
be some metrics as to how much that stakeholder desires or wants to avoid that situation. The Stakeholder Desirability

association class represents these as properties of the association: net desirability, net harm, net benefit and net risk —
which can all be poitive or negative reflecting a benefit or harm, respectivly.

192 Semantic Modeling for Information Federation (SMIF) 0.9

7.1.8 Annotation

This profile provides a way to comment on any element using annotations. One can annotate classes, properties, and
models using an open-ended system of annotation properties. An annotation property defines information about the
model (metadata), not about the subject domain. A property can be made an annotation property using the «Annotation
Property» stereotype on a UML property[CC14] .

Every «Annotationy is a textual value for an «Annotation Property». An annotation describes some subject using an
annotation property and a (usually textual) value. An annotation should specify a tagged value called “value for” that
refers to an «Annotation Property».

For example, the following diagram illustrates several UML comments stereotyped with « Annotation»

«Anything»
Anything
(Examples.Library)
«comment»
aftnbutes
Annotation P ctva it Any individual of type “Library Branch”
IR operyrgeeonp can have a "branch entry date”
annotation property.
7
/
Ve
Library Branch Vs : Li Branch
(Examples.Library) s branch entry date = "5/15/2016"
/
atinbutes
«Annotation Propertysbranch entry date : date:{’
«Union»
lent by lends
1 1.* (Examples.Library)

|

| [

| | |

I Book Periodical

| (Examples.Library) (Examples.Library)

AY
«Annotation» \
{value for = description} \

A building where Books or Periodicals may
be read or borrowed. «comment»

This is a comment about the class
Book. This comment will create a
textual value for a default annotation
property when exported to OWL.

Figure 22 Annotation Examples[CC15

71.9 Specific kinds of classes

There are additional concept modeling specific stereotypes documented in the reference section that further define the
semantics of a class. Some of these stareotypes are very important for understanding the concept model and are further
explained here. These are roles, phases and quantity kinds.

7.1.91 Anything

The stereotype «Anything» can be applied to any class to make it special[CC16] . Every such special class is equivalent to
one topmost class (T) of which all other classes are subclasses. Thus, a property of a class marked as «Anythingy is

Semantic Modeling for Information Federation (SMIF) 0.9 193

inherited by all subclasses. In addition, while the name of a such a marked class is irrelevant, consistently naming such
classes “Anything” in all concept models avoids any confusion with normal classes.

cAnythingn
Thing

+has member : Thing

+provides : Thing

+5 conferred on : Thing

+has responsibility : Duty

+i5 conferred by : Thing

+i5 mandated by : Thing{subset i conferred by}

Figure 22 «Anything» Example

7.1.9.2 Union

A «Uniony is a class that has an extent (set of instances) which is equivalent to the union of the extents of all types that
specialize the Union (Subclasses). Specializing types shall include subtypes and types that realize the union. The union
can be either named or unnamed. When it is unnamed, it can only be used at the domain or range of a property.[CC17

Note: UML realizations are included to support unions across external models because UML generalization cannot be
used across external models due to the ownership of generalization.

An anonymous union class always implies a complete subclass generalization. [CC18

The following diagram states that an instance of a Person may have a value of type Cat or Dog for the cares for property.
The diagram also states that an instance of a Cat or a Dog may have a value of type Person for the cared for by property.

Person |cared for by cares for [unions
(Case 26) |" "
(Case 26)
{complete, disjoint}
gs3
Cat | Dog
(Case 28) (Case 26)

Figure 23 A union class

7.1.9.3 Intersection

An «Intersection» is a class that has an extent (set of instances) equivalent to the intersection of the extents of all
supertypes. Intersection is a stronger statement than a subtype, as a subtype may be a subset of the intersection. An
instance of all the supertypes implies an instance is also an instance of the intersection type.

For intersection, The SMIF profile considers UML generalization and UML realization equivalent. This is due to
ownership and legacy considerations in UML. Generalization is the preferred representation.

Note: Realizations are included to support unions across external models. UML generalization can not be used across
external models due to the ownership of generalization.[CC19

7194 Facets, Roles, Phases and <<Facet Of>>

Some types may be considered the “fundamental” type of something that is essential to its being and identity for its
entire lifetime; this is the default assumption of most classes. Other types classify something in a specific context or for a
period of time, SMIF calls these “Facets”. Examples of facets are “Roles” and “Phases” that something may have over
its lifetime. The facets an instance is classified with may change over time and may be only valid within a particular
context or viewpoint. Facets are defined with a <<Facet Of>> generalization to another type, the type of thing that can
be so classified. For example, “Policeman” can classify a “Person”.

194 Semantic Modeling for Information Federation (SMIF) 0.9

Context specific types such as Roles and Phases are classifications and expected to be used in this more contextual and
dynamic fashion; these types may be assigned to or removed from an instance over time or in a context.

For an instance to be classified with a classification, it must also have the type of what the classification <<Facet Of>>.
To use the example above, a “Policeman” can’t classify a Toaster since the toaster is not a person. Please see the “Role”
and “Phase” discussion for more usage scenarios of <<Facet Of>>.

Implementation note: most programming languages do not allow for direct representation of multiple
classifications, multiple inheritance or context. A common implementation pattern is to represent
classifications, roles and phases as independent objects related to the object they classify. An example of this is
the iUnkown pattern in .NET.

The following stereotypes define additional classification semantics.

7.1.9.5 Roles

Roles are facet classes that are expected to be dynamic and contextual, such as teacher, victim or president. A role is
defined using a class with the <<Role>> stereotype and, optionally, a <<Facet Of>> generalization. Implementation
technologies should interpret roles as classifications that may be added to or removed from an instance over time and
may be defined in a particular context. A role is usually required to be a role of some particular other class, for example
a teacher is expected to be a role of a person (at least until a computer takes her job). The constraint of what a role must
be a role of is defined using a <<Facet Of>> stereotype of a generalization. A role will also frequently have a
relationship with something where the multiplicity is at least one. For example, a person is a parent if they have at least
one child.

Many implementation languages don’t have the capacity to represent roles, so roles are sometimes implemented is the
single and unchangeable “type” of a class or DBMS table. The problem with this is that the same individual may not be
connected across all their roles. Specifically representing roles allows the same individual to play multiple roles and for
these roles to change — this better reflects the reality of the world and the way we think about it.

Actor
Social Agent
{incomplete, disjoint}
Reponsible Performer Constraint «Facet Of» |[«Facet Of» «Facet Of»
Person Organization «Role» «Role» «Role»

Victim | |Stakeholder | |Supplier

Figure 22 Role Example

The above example shows that a “social agent” can be a person or organization and that either could be classified as
being able to play the Supplier, Stakeholder and/or a Victim roles.

Semantic Modeling for Information Federation (SMIF) 0.9 195

Roles help to decouple concepts in models and specifically allow an instance to “play” multiple roles at the same time or
over time. Roles, when combined with quantification constraints, clearly define the semantics of roles. For example, we
could say that a victim must be a victim of some incident and an owner must own something.

There are various implementation patterns for roles; SMIF does not define a specific implementation pattern, such
choices will be based on the target technology and application requirements. Examples of such implementation patterns
include defining a separate technology object for each instance of an entity playing a role, defining roles in separate
graphs or using multiple classification.

Phases

Phases are facet classes that are expected to classify an instance over a specific span of time, such as a teenager, “legal
adult” or “Paid Invoice”. A teenager is a person between the ages of 13 and 19 (inclusive) — perhaps “legal adult” is of
age 19 or older — we may also want to consider people living or dead, thus “alive” and “dead” would be phases of a
lifeform. Phase may be considered a synonym for the “State” of something.

A phase is defined as a class with the <<Phase>> stereotype. Like roles, phases use the <<Facet Of>> stereotype of a
generalization to define what a phase must be a phase of.

‘ Person ‘
A 7 iy Fa3

«Facet Of» «Facet Of» «Facet Of» «Facet Of»

‘ Living ‘ Dead Legal Adult ‘Teenager ‘

CC20

Figure 23 Phases of a person
Also like roles, phases help to decouple concepts in models and specifically allow an instance to “be in” multiple phases
(or multiple roles) at the same time or over time. If an instance cannot be in two phases at the same time or be in a role

and a phase a “disjoint with” constraint can be used to state that restriction. For example, “Dead” is disjoint with “Legal
Adult” and “Living”. Only a “Legal adult” can commit to a contract.

7.1.9.6 Quantity kinds and units

«Quantity Kind»
cc21] Fundamental to understanding and describing something is physical and Area
other qualities such as temperature, length and color. Many data models fail to
capture units of measure explicitly which can and has[1] resulted in dramatic - !
K R R «Base Unit Type» | | «Unit Type» «Unit Type»
systems failures. A concept for somethings weight should properly be typed by (Sauﬂre Meter Lware Feet { Acre

a measure of weight, not an “int” or “real” — which are just ways to represent
numbers without knowing what they mean. Of course there needs to be numbers, but in relation to their units.

In that there are different units that can represent the same kind of measure, such as degrees Celsius and degrees
Fahrenheit can represent the same temperature — an abstraction is used above like units. The abstraction for a
measurable unit is called a <<Quantity Kind>>. Examples of quantity kinds include Length, mass, temperature,
frequency, etc.

As any element of measurement data must be specific to a specific unit in a specific data exchange, the <<UnitType>>
stereotype is used to define a unit for a quantity kind. A <<Represents>> stereotype of generalization (Diagrammed as a
green arrow) is used to say that the unit represents the quantity kind.

In the example above, the “Area” quantity kind (indicated by a black shaded class) can be represented by (the green
lines) “Square Meter”, “Square Feet” or an “Acre”. One unit may be nominated as the “Base Unit” and will be used to
express conversion factors between the units. As per SI specifications, the Square Meter is the base unit.

196 Semantic Modeling for Information Federation (SMIF) 0.9

By convention quantity kinds are used in fully conceptual models whereas units are used in data models. The “Animal”
example shows quantity kinds being used to define properties of animals.

7.1.10 Assertions about concepts

Above we defined the network of essential concepts as classes, relationships and properties. Additional assertions may
be made about those concepts using both UML foundational and extended profile capabilities. The following define the
kinds of assertions that can be made. Note that the term “property” applies to both simple properties and the ends of
associations.

7.1.10.1 Property Ownership

The concept modeling profile of UML interprets the owner (defining class) of a property definition as the subject of that
property (its domain) and the context in which that property must conform to certain constraints.

Constraints may be placed on a property. These constraints can include multiplicity, which includes a minimum
cardinality and a maximum cardinality, a type for the property, existential quantification, and universal quantification.
CC22] When an instance is a member of a class, all of that class’ constraints must be met.

Property ownership is not interpreted as “slots” in an object. Property values may or may not be independent of the
instance that defined them, thus supporting an OWL/RDF, or “open world”, interpretation of properties and
associations.

7.1.10.2 Cardinality

Cardinality defines how many value of a property may exist for a particular subject instance. For example, how many
ages can a person have? The obvious answer is that a person can have at most one age at any one point in time. Thus
cardinalities represent the number of instances at any one time — regardless of how it is represented.

UML allows the cardinality of a property to be left unspecified, in which case it defaults to 1..1. The concept modeling
profile interprets unspecified cardinalities as 1 (one) based on UML defaults. Note that conceptual models do define
what you may or must know or what the requirements of a data model are — they define what must be true about the
world as it is conceived.

7.1.11 Constraining properties and associations

A cardinality of one or more defined for a property requires that an instance of the related element must exist for an
instance of the domain (owning class) of that property or association end to be valid. For example, a living person must
have exactly one living brain. This is known as an existential quantification () or qualified constraint in first order
logic. Existential quantification is defined using UML cardinality and, potentially, subsets.

An existential quantification can be stated for a newly defined property or an existing one. For a newly defined property
this is done by simply stating cardinality greater than one. For example, a phone must have at least one button with a
“has buttons” association end and a cardinality of “1..*”. When a new property is being defined it is given a name. If an
existing property is being constrained (without a new property being defined) it subsets or redefines [CC23] the existing
property and does not need a name. In the concept modeling profile of UML, any cardinality requiring one or more
creates an existential quantification constraint.

A property is not limited to a minimum and a maximum cardinality (known as multiplicity) for just one type. A property
can have a multiplicity for a superclass, while at the same time having a more specific multiplicity for one or more
subclasses of that superclass. This type of constraint is an assertion that, among other possible values, the number of
values of one of these subclasses is between some minimum and maximum cardinality.

Semantic Modeling for Information Federation (SMIF) 0.9 197

-has button
Phone Button
1.%

1

Button

{subsets has button}

Figure 27 Phone constraint: A phone must have a hangup button

For example, we may say a phone must have one or more buttons with a “has button” property but exactly one of those
buttons must be the “hang up button”. We would then define an unnamed property with the type “hang up button” that
subsets the “has button” property with a cardinality of 1. If we wanted the Hangup Button to also define a new property,
we would give that property a name.

Phone | -has button g tton |

3 1.* |

-has hangup Button ; 'Hangup Buﬂon |
{subsets has button} 1

Figure 28 Hangup button with new property

In the concept modeling interpretation of UML, subsetting or redefining a property without giving the new property a
different name (or leaving off the new property name altogether) creates a constraint without defining a new property.

As {subsets} or {redefines} with an omitted name is not well defined in UML, in the concept modeling profile it is used
to state that a subset of values must meet the stated cardinality and type constraints of the subsetting property. It does not
define an instantiable property of the domain, although it does indicate a context in which this constraint holds: the
owning class and its subclasses.

The diagram below shows an existential quantification constraint on the global property “is conferred by” (from the
Anything “Thing). The multiplicity is such that at least one of the instances of the property constraint must be one of the
types in the union.

Note that the property adding the constraint is unnamed. This is equivalent, in this case, to naming this property
the same as the property being constrained (“is conferred by” from the Anything “Thing”).

| } Union:

|Legal Construct bt

(s Capnchis} | 1. (Legal Capacties)
{subsets is conferred by} ' .

{complate, overiapping}

e d |+asssrave oo
CC24 @

Figure 29 Constraining a global property

7.1.12 Tightening a property’s type

Sometimes it is necessary, in the context of some class, to constrain a// the values of a property to a particular type.
When defining a new property, the type of that property asserts that all values of that property must be of the given type.
This is known as a universal quantification or for-all constraint (V) in first order logic. This kind of constraint is an
assertion that only values of the specified type are valid, and the number of values must be between some minimum and
maximum multiplicity.

198 Semantic Modeling for Information Federation (SMIF) 0.9

Where all values of a property must be of a given type in a specialized property, UML {redefines} is used as part of the
definition of the property. [CC25] If the redefined property is given a name, a new property with the quantification is
defined. If the redefined property does not have a name, the existing property is constrained in the more specialized
context (usually a subclass).

| Phone . -has bution o I
ﬁS—I 1.* L
1 redefines has button —I; —l—
Simple Phone { } :Hangup Button Answer Button
1 L =
1
{redefines has button}

Figure 30 Example of redefines

The example above shows a “simple phone” that has exactly two buttons and they must be an answer button and a
hangup button. Since redefines is used, no other buttons are allowed.

The diagram below shows the introduction of a new property “consists of”’, defining a universal quantification constraint
on the property. The constraint states that, in the context of Soccer Team and any of its subclasses, all values of this
property must be of the type “Soccer Player” and that there must be between 5 and 11 values of this property.

[soccer Team | consists of | Soccer Player
(Case 03) 5. .11 (Case 03)

Figure 31 Example of Cardinality range

The diagram below shows a universal quantification constraint on the property “observer”. Where any occurrence can be
performed by any actor, an observation must be performed by an entity in the role of observer.

package Observation [@ Ubser\fﬁtlunu

«Phases
Actual Situation

performs.

Occurrence
observed in

performed by

Observation -

has observation
the act of observing

«Rolen Anything observes observed by
Tool L

carefully or in order to
observed using gain information.
aRoles
Observation Tool |{subsets uses} ’—T—‘

The act of
determining a
quantity via a
repeatable and
objective process.

has observation
fzubsets performs}

cbserver |{redefines performed by}

Measurement Sighting Observer

-value : Quantity Kind

CC26
Figure 32 Observation Example
7.1.13 Inferring a type from its properties

A property's multiplicity or type is declared in the context of an owning class or a special «Anything» class. These

declarations are always necessary conditions for an instance to be a member of the owning class[CC27], or, in the case of
«Anythingy, for an instance to be valid at all.

Semantic Modeling for Information Federation (SMIF) 0.9 199

Another kind of condition is known as necessary and sufficient. A class with at least one necessary and sufficient
condition is known as a defined class[CC28] , which means the differentiating characteristics of the class that make it
distinguishable from its parent and sibling classes are defined. Note that using a necessary and sufficient condition on a
property with a minimum cardinality of zero is not meaningful.[CC29]

-h —
as D:rtcn Button ‘

Flectrﬁnﬁ: Giz |
Nl

«Sufficents Vngua_fiU nbn_"
{subsets has button} L_ .

Figure 33 Phone example for sufficient

The diagram above defines a phone as any “electronic giz” that has a hangup button. The existence of a hangup button
is sufficient to know something is a phone.[CC30

In the concept modeling interpretation of UML, a property that has the «Sufficient» stereotype applied to it indicates that
when an instance satisfies the multiplicity and type constraints for all the sufficient property’s’ values, not only is a
necessary condition for being an instance of the class met, it is a sufficient condition.. This necessary and sufficient
condition could allow an inferencing engine to classify that instance as a member of the class that owns the property. All
<<sufficient>> constrains of the class and all superclasses must be met for an instance’s type to be inferred.[CC31]

In the concept modeling interpretation of UML, a property that has the «Sufficient» stereotype applied to it indicates that
when an instance satisfies the multiplicity and type constraints for all the sufficient property’s’ values, not only is a
necessary condition for being an instance of the class met, a sufficient condition is also met. This necessary and
sufficient condition allows an inferencing engine [CC32] to classify that instance as a member of the class with that
condition. Once an instance is classified automatically, the conditions on any other properties that have the «Sufficient»
stereotype, including those inherited from superclasses, merely become necessary conditions the instance must meet to
be a valid member of the owning class. An instance satisfying the constraints of all the «Sufficient» properties is enough
for an inferencing engine to automatically classify an instance.

The diagram below shows that when an instance with the property “has contract with” satisfies specific multiplicity
(“1..*”) and type constraints (of type ‘Steering Wheel Manufacturer” and “Windshield Manufacturer”) for the property’s
values, the instance meets necessary and sufficient conditions to be a member of the class “Car Manufacturer”.
Therefore, an inferencing engine [CC33] would classify this as an instance of the class “Car Manufacturer”. As discussed
above, an instance meeting all of these necessary and sufficient conditions is enough to classify the instance. The
conditions on the values of these properties become necessary conditions on an instance for it to be a valid member of
class “Car Manufacturer.”’[CC34] Also, an instance meeting all of the necessary and sufficient conditions is enough to
distinguish instances of the class “Car Manufacturer’ from its parent class “Manufacturer.”

has contract with |0..*
Manufacturer

(Case 20)
Fay

Steering Wheel Manufacturer L Car Manufacturer JWindshieId Manufacturer
(Case 20) [i. (Case 20) 1.5 (Case 20)
{sufficient} {zufficient}
{subsets has contract with} {subsets has contract with}

CC35

Figure 35 An example of necessary and sufficient condition

200 Semantic Modeling for Information Federation (SMIF) 0.9

Semantic Modeling for Information Federation (SMIF) 0.9 201

7.1.14 Property Chain

A property chain is useful for composing a property from two or more other properties that are put together in a
chain[CC36] . It defines the property with reference to the other properties. The property chain allows you to navigate
from a starting class (the one with the stereotype «Equivalent Property») [CC37] through a chain of properties that take a
path through the same or multiple other classes.

A property chain is an ordered list of linked properties, therefore, it should have two or more “chain” tagged

values[CC38] .

The following example describes a Person class that has two subclasses “Female Person” and “Male Person”, and four
properties “has parent”, “has father”, “has uncle”, and “has brother”. The stereotype of the property “has uncle” will be
«Equivalent Property», and the tagged value is chain = has father, has brother. (Note that the «Equivalent Property»
stereotype is suppressed in this diagram, but the tagged values are not.)[CC40]

package Property Chain [Property Chainu

Person
(Property Chain)

has parent

2

gs1

";incu mplete, digjoint}

Female Person Male Person
(Property Chain}

(Property Chain)

has brother

3

has uncle

3

has father

{chain = has father, has brother}

1

Figure 34 Property Chain Example

7.1.15 Equivale

nt Property

An «Equivalent Property» [CC41] allows you to represent equivalent properties [CC42] in a model. You can make a
property equivalent to two or more other properties by applying the stereotype «Equivalent Property» to the
referenced properties and the tagged value “equivalent to” the equivalent properties.

The following figure shows the equivalent properties in a diagram[CC44] .

202

Semantic Modeling for Information Federation (SMIF) 0.9

package Example[[§) Exampleu

Person
(Example)
has kid has child

. * {equivalent to = has kid}

T{m complete, disjoint}

gs1
|
Female Person Male Person |has dad
has mom (Example) (Example) 1
1
has mother |
- . has father
{equivalent to = has momj b
has papa
1

Figure 35 Equivalent properties Example

In the example, the property “has mother” is equivalent to the property “has mom”.

7.1.16 Equivalent Class

An «Equivalent Class» stereotype applied to a generalization can specify equivalence between two classes. Class
equivalence expresses a generalization relationship stereotyped as «Equivalent Class». Tools may draw this with a
double-headed arrow.[CC45

The following figure shows two equivalent classes in a diagram.

package Example [E‘-] Example U

US President «Equivalent Class» Principal Resident of White House
(Example) [B (Example)

Figure 36 Two Equivalent Classes in the Concept Modeler

In the example, the equivalence class arrow defines that the two classes are semantically equivalent to each other.

7.2 SMIF Profile::SMIF Concept Modeling Profile Reference

The conceptual modeling profile defines the conceptual modeling capabilities of SMIF in UML.

Semantic Modeling for Information Federation (SMIF) 0.9 203

7.21 Diagram SMIF Conceptual Modeling Profile

Profile Diagram SMIF Concept Modeling Profile [SMIF Conceptual Modeling Profileﬂ
(Stereotypes Defined
|
| «Metaclass» «Metaclass» «Metaclass»
Property Classifier Element
|
| I
| «stereotype» «stereotyper «stereotype»
| «stereotype» Equlva::nt Property Resource «stereotype» «stereotype» «stereotype» «stereotype» Extern;l Reference
| Sufficient [Property] [NamedBlement] Anything Union Intersection Value (Bement]
att 7 7y 4 i i attributes
| [Froporty) +equivalent to : Property [*] Y S;"""””""” [Ciassifier] [CkEsatn bl (Gassrer] +external reference : String
+chain : Property [*[{ordered} 107 oWng +external term : String
|
‘ «stereotype» «Metaclass» ‘ T
| Involves Package
| [Property] «stereotype» «stereotype»
Quantity Kind Unit Value
| «S‘GTSOWI?G». «stereotype» [Classifier] [Classifier]
| Ch[aF:raudeer:I?hc ESierectypey Mode! +ratio : eal Y
| perty. Annotation Property [Package] +offset : Real
| [Property] attributos ‘ «Metaclass» ‘ +symbol : String
| ‘ «Metaclass» ‘ value for ™ +namespace prefix : String T Class T
Comment ?
| T T ’—?—‘ «stereotype» «stereotype» «stereotype»
| A 4 /i
«stersotypen «stereotyper Facet Relationship Base Um.t.VaIue
| R 7 «stereotype» «stereotype» [Class] [Class] [Classifier]
i, Concept Model Information Model
| [Comment] [Comment] [Package] [Package]
|
‘ «Metaclass» «Metaclass» gotreolpes ssterectypen «Metaclass»
| Association Dependency Role bhase Generalization
| [Class] [Class]
| T T T T T «stereotype»
| «stereotype» «stereotype» «stereotype» || «stereotype» «stereotype» «stereotype» Category «stereotype» «stereotype» “/“
Restriction Is In Context | Enumerates Has Value Disjoint With Equivalent To [Class] Facet Of Equivalent Class
‘ [Association, Property] [Dependency] || [Dependency] | [Dependency] | [Dependency] [Dependency] [Generalization] [Generalization]
|
(N Mate e At e e 1o S U AIIE e e - - - - - - - -0 0= o
‘UML Meta model classes used and interpreted without SIMF specific stereotypes |
| Metacla: «Metacla «Metaclass» N «Metaclass» ! «stereotype» (% |
ValueSpecification Dependency GeneralizationSet Constraint Property Class Entity |
| [Class]
| |
| «Metaclass» «Metaclass» ! «Metacla: I |
Generalization Enumeration EnumerationLiteral Association Package DataType)
N - - - - - D D - D D D D e D D e e e e e e e e e e e e e e e e e = =

Figure 1 SMIF Conceptual Modeling Profile

7.2.2 Stereotype Annotation

An <<Annotation>> comment provides a textual "body" as a "value for" one <<Annotation Property>> describing the

annotatedElement(s).

Base Classes

. Comment

Tag Definitions

© value for : Annotation Property [1]

<value for> is the property for which the <<Annotation>> is providing a value.

7.2.3 1.2.3 Stereotype Annotation Property

An <<Annotation Property>> is a kind of <<Resource>> that asserts a property represents metadata rather than

assertions about the subject domain.

Base Classes

204

Semantic Modeling for Information Federation (SMIF) 0.9

. Property

Direct Supertypes

° Resource

7.24 1.2.4 Stereotype Anything

<<Anything>> is a class that represents anything and is equivalent to all other classes of anything in any other model or
logic. The defined class is equivalent to SMIF:Anything, OWL:Thing and other "top level" classes.

Because of this equivalence, every class in every model virtually inherits from Anything, just as all OWL classes
virtually inherit from owl:Thing.

<<Anything>> classes may be used to define "global properties".[CC46

Base Classes

. Classifier

7.2.5 Stereotype Base Unit Value

<<Base Unit Value>> is a kind of <<Unit Value>> that marks one Unit Value of a quantity kind as the base Unit Value
within a model. The base Unit Value provides the basis for conversions between units of the same quantity kind. The
base unit always has a ratio of one and an offset of zero.

Base Classes

. Classifier

Direct Supertypes
. Unit Value

7.2.6 Stereotype Category

A category is a facet that is a classification or division of people, events or things regarded as having particular shared
characteristics. Categorization is typically contextual, potentially transient and may or may not be formally defined.

As with all facets, categories are non-rigid. Something classified by a category must also be classified by an entity type.
An entity may be classified by any number of categories and those categories may change over time.

Base Classes
e C(lass
Direct Supertypes

e Facet

7.2.7 Stereotype Characteristic

A kind of characteristic a type of thing may have, e.g. paint may have a color. Characteristics are the type of
characteristic bindings which are "first class" elements and may participate in relationships and have other
characteristics.

[IDEAS] Property: An IndividualType whose members all exhibit a common trait or feature. Often the Individuals are
states having a property (the state of being 18 degrees centigrade), where this property can be a CategoricalProperty
(qv.) or a DispositionalProperty (qv.).

Semantic Modeling for Information Federation (SMIF) 0.9 205

[ISO 1087] type of characteristics: category of characteristics (3.2.4) which serves as the criterion of subdivision when
establishing concept systems. NOTE The type of characteristics colour embraces characteristics (3.2.4) being red, blue,
green, etc. The type of characteristics material embraces characteristics made of wood, metal, etc.

[UML] Property
Base Classes

. Property

7.2.8 Stereotype Concept Model

A <<Concept Model>> is a kind of <<Model>> that represents concepts in a real or possible world. Instances of
elements in a concept model are "real world" things, not data about those things.

Base Classes

. Package

Direct Supertypes
. Model

7.29 Stereotype Disjoint With

A <<Disjoint With>> dependency is an assertion that two model elements do not and may not denote any of the same set
of entities.

When applied to a classifier, every element of the classifier's extent (set of instances) is included in the set of disjoint
things.

Base Classes

. Dependency

7.210 Stereotype Enumerates

An <<Enumerates>> dependency asserts that the supplier of the dependency is a type and the client of the dependency is
a package containing a complete set of possible instance specifications. In this way, <<Enumerates>> is more general
than a UML Enumeration because it can enumerate more than just UML data types.

Base Classes

. Dependency

7.2.11 Stereotype Equivalent Class

A <<Equivalent Class>> generalization is an assertion that two classes have the same extents (set of instances). Unlike
ontological languages it is not assumed that the two elements are consistent, as statements from different context may or
may not agree.

Base Classes

° Generalization

7.2.12 Stereotype Equivalent Property

<<Equivalent Property>> is a declaration that a property is equivalent to one or more other properties (using "equivalent
to") or is equivalent to a chain of other properties (using "chain"). <<Equivalent Property>> with at least one value for
the "equivalent to" property is an alternative way of expressing <<Equivalent To>>, without introducing additional lines
on a diagram.

206 Semantic Modeling for Information Federation (SMIF) 0.9

Either "equivalent to" or "chain" must have a value.
Base Classes

. Property

Tag Definitions

chain : Property [*]

An ordered list of properties forming a "property composition" expressing a traversal path that is
equivalent to the stereotyped property. This is similar to a "property chain".

Due to potential "missing information" in creating a chain, a chain may or may not be able to be
determined from asserting the chained property. Such a determination is defined in the mapping rules
for that property in a particular context.

Note that a chain may also be defined with mapping rules.
equivalent to : Property [*]

A set of properties that the <<Equivalent Property>> is equivalent to. Note that equivalence can also be
declared with a <<Equivalent To>> dependency.

1.2.12 Stereotype Equivalent To

An <<Equivalent To>> dependency is an assertion that two model elements represent the same thing or the same set of
things. Unlike ontological languages it is not assumed that the two elements are consistent, as statements from different
contexts may or may not agree.

Base Classes

. Dependency

7.213 1.2.13 Stereotype External Reference

<<External Reference>> provides traceability to the source of a "fact" in a model based on some external information
resource. This references helps to facilitate provenance. Reference is a statement about the model data and has no
semantic implication. Source reference may impact the trust in a statement but the evaluation of trust is outside of this
specification.

External reference is combined with the owned comment(s) to create SMIF descriptions as defined in the SMIF meta
model..

Base Classes

. Element

Tag Definitions

external reference : String
Specifies the location URL of the external resource. The format must comply with [RFC3987].
external term : String

The external term or location of the information in the source. The form of expression of the term or
term path is dependent on the referenced technology.

Stereotype Facet Of

A <<Facet Of>> generalization is a "mix in" or "non rigid" classification of an entity beyond any
fundamental (rigid) entity type.

Semantic Modeling for Information Federation (SMIF) 0.9 207

An instance must be typed by the classifies supertype for it to also be classified as the classifies subtype. A classification
may be contextual, such as within a relation, situation and/or time frame. Instances may have any number of types and
facets may change over time.

<<Facet Of>> is used in defining what a <<Role>> may be a role of, and for phases, what a <<Phase>> is a phase of.
For a <<Category>>, <<Facet Of>> defines the kind of thing classified.

<<Facet Of>> Implies that specialized type is a <<Facet>>
Facets may be added to or removed from an individual over time and in different context.
Base Classes

° Generalization

7.2.14 Stereotype Has Value

A <<Has Value>> dependency asserts that the client of the dependency is a type and the supplier of the dependency is an
instance specification that defines acceptable values for one or more properties of that type. Each slot of the instance
specification is a possible value for a corresponding property in the type.

<<Has Value>> corresponds to one or more OWL property restrictions containing a "hasValue" constraint.

Base Classes

. Dependency

7.2.15 Stereotype Information Modelccs2)
An <<Information Model>> is a kind of <<Model>> that represents

a model for some purpose, independent of technical implementation. An information model may contain logical models
or data models, as well as other logical viewpoints.

Base Classes

. Package

Direct Supertypes
3 Model

7.2.16 Stereotype Intersection

An <<Intersection>> is a class that has an extent (set of instances) equivalent to the intersection of the extents of all
supertypes. Intersection is a stronger statement than a subtype, as a subtype may be a subset of the intersection. An
instance of all the supertypes implies an instance is also an instance of the intersection type.

For intersection, The SMIF profile considers UML generalization and UML realization equivalent. This is due to
ownership and legacy considerations in UML. Generalization is the preferred representation.

Note: Realizations are included to support unions across external models. UML generalization cannot be used across
external models due to the ownership of generalization.

Base Classes

. Classifier

208 Semantic Modeling for Information Federation (SMIF) 0.9

7.217 Stereotype Involves

<<Involves>> defines a property of a class as the "end" of a relationship - the way in which instances of a a relationship
participate in (or, are involved in) instances of another type (including other relationships). Sometimes called a variable,
argument or role.

In a conceptual model the terms associated with an <<Involves>> property are typically "verb phrases" defining how
instances of the involved type participate in the relationship.

Base Classes

¢ Proeprty

7.2.18 Stereotype Is In Context

<<Is In context>> is an assertion that the client of the dependency is in the context of the supplier of the dependency. All
assertions and rules defined in the supplier context apply to the client and everything in the context of the client (i.e., it is
transitive). Packages, classes, situations and instances are typical contexts. Note that <<Is In Context>> is the default
interpretation of a dependency, if no stereotype is specified it will be interpreted as <<Is In Context>>.

Base Classes

. Dependency

7.2.19 Stereotype Modelccss)

<<Model>> is stereotype of package that may have an id (see <<Resource>>) and/or a namespace prefix (like the "dc¢"
in "dc:title").

Base Classes

. Package

Tag Definitions
namespace prefix : String

A hint as to an appropriate abbreviation for a model that may be used in some technology mappings,
such as XML. The prefix should be short and contain only letters and numbers and must start with a letter. e.g.,
"dc" in "dc:title".

Direct Supertypes

. Resource

7.2.20 Stereotype Phase

A <<Phase>> (a.k.a. "State") is a classification of an entity based on change of that entity over time. A <<Phase>>
<<Facet Of>> the types that may have that phase (e.g., "Teenager").

A phase is a [DOLCE] "non rigid sortal", a type that may change over the lifetime of an entity.

Base Classes

° Class

7.2.21 Stereotype Quantity Kind

<<Quantity Kind>> is an aspect common to mutually comparable quantities represented by one or more units. Units
with a common quantity kind may be algorithmically converted to any other unit of that quantity kind. e.g. temperature.
[JCGM 200:2008].

Semantic Modeling for Information Federation (SMIF) 0.9 209

Units with a common quantity kind may be algorithmically converted to any other unit of that quantity kind. e.g.
temperature. SMIF takes a wider view of quantity kinds to include conversions that may be contextual and time
dependent, such as currencies.

Base Classes

. Classifier

Direct Supertypes

. Value

7.2.22 Stereotype Relationship

A relationship defines a condition involving related things. A relationship may be asserted within a context as true or
false within that context. Each instance of a relationship has a number of bindings to the "ends" of the relationship
which do not change for the life of the relationship..

A relationship may be true or false within its context (including a time frame) but is atomic in its truth value.

Relationships may participate in (be bound to) other relationships and as such bindings involving a relationship may
change over time. That is, relationships are "first class" objects.

The relationship stereotype may be used with association classes or classes. All associations are implicitly relationships.
Classes stereotyped as relationships should stereotype the relationship ends as <<Involves>>.

Base Classes

. Class (including association class)

7.2.23 Stereotype Resource

A <<Resource>> is anything that can be referenced by an identifier in a model, ontology or vocabulary. The resource
identifier is often an IRI.[CC54

Base Classes
. NamedElement
Tag Definitions
id : String
A unique identifier for any resource.

When defined for a Package, id has the format defined in [RFC3987]. In this case, it is equivalent to
UML:URYI, and setting one will set the other.

Stereotype Restriction

A restriction is a property or association that constrains an existing property or association rather than defining a new
concept in a domain.

Properties with no name or the same name as a property they subset or redefine are implicitly restrictions. Associations
with a restriction as an end are implicitly restrictions.

Base Classes
e Association

e Property
Stereotype Role

210 Semantic Modeling for Information Federation (SMIF) 0.9

A <<Role>> is a classification of an entity based on that entity's behavior, participation in a situation, or capabilities. A
<<Role>> <<Facet Of>> the types that may play that role. e.g., "Teacher" <<Facet Of>> “Person”.

Arole is a [DOLCE] "non rigid sortal", [CC55] a type that may change over the lifetime of an entity.

Base Classes

° Class

7.2.24 Stereotype Sufficient

Specifying <<Sufficient>> for one or more of a classes or association’s properties means that an instance having an
acceptable cardinality of values for all of those properties implies that the instance is an instance of that type.[CC56

Base Classes

J Property

7.2.25 Stereotype Synonym

<<Synonym>> defines an alternate name for the annotated elements of the comment. The alternate name is the body of
the comment.

The alternate name will not be the "preferred name" of the element.

Base Classes

° Comment

7.2.26 Stereotype Union

A <<Union>> is a class that has an extent (set of instances) which is equivalent to the union of the extents of all types
that specialize the Union (Subclasses). Specializing types shall include subtypes and types that realize the union.

Note: UML realizations are included to support unions across external models because UML generalization can not be
used across external models due to the ownership of generalization.

[MathWorld] Given two sets A and B, the union is the set that contains elements or objects that belong to either A or to
B or to both.

Base Classes

. Classifier

7.2.27 Stereotype Unit Value

A <<Unit Value>> is a <<Value>> with an <<External Reference>> that represents a type of a quantity value
referencing a specific unit. A Unit Value is a required type of a property representing a quantity.

[JCGM 200:2008] A Unit is a real scalar quantity, defined and adopted by convention, with which any other quantity of
the same quantity kind can be compared to express the ratio of the two quantities as a number. e.g. Degrees Centigrade,
Miles.

Each Unit Value represents refinement of a quantity kind using generalization and is thus substitutable for that quantity
kind. Typically, quantity kinds are used in conceptual models and Unit Values in physical or logical models.

Unit Values may only subtype quantity kinds and numbers.

Note that Unit Values are not units, but the type of quantity values expressed with reference to a common unit as defined
in [JCGM 200:2008].

Semantic Modeling for Information Federation (SMIF) 0.9 211

Each instance of a Unit Value shares a common unit (as defined by standards) with a reference defined by "external
reference" and "external term".

Classifiers defined as <<Unit Value>> shall semantically subclass the SMIF model “Unit Value” class.
Base Classes

. Classifier

Tag Definitions

offset : Real

The difference between zero in the unit and zero in the base unit after the ratio is applied to the base
unit as defined within the same model.

ratio : Real

The multiplier by which to multiply the unit to convert to the base unit as defined within the same
model.

symbol : String
The accepted symbol for a unit. e.g. "g" for "Gram".
Direct Supertypes

° External Reference

. Value

7.2.28 Stereotype Value

A <<Value>> is a type representing an atomic unit of information without independent identity. Values include numbers,
strings and enumerations. In some cases values may have internal structure. Values do not change over time.

Quantity kinds and units are also values. Values may stereotype any classifier. UML data types, including primitives and
enumerations, are implicitly values.

Classifiers defined as <<Value>> shall semantically subclass the SMIF model “Value” class.

Base Classes

. Classifier

212 Semantic Modeling for Information Federation (SMIF) 0.9

7.3 UML Profile — SMIF Patterns & Model Mapping Profile

This section is still undergoing edits.

Pattern based rules provide a general framework for stating the consistency of and between SMIF models and elements.
The primary use of patterns is for mappings between data models and conceptual models using a <<Mapping Rule>>
however a <<Pattern Rule>> may be used to assert consistency within a model, for example to represent generic
assertions such as “all birds have feathers”. Pattern based rules are declarative in nature.

Mapping rules define how a particular data model or schema <<Represents>> information about the concepts defined in
conceptual reference models. This facilitates an “n-way” mapping of information represented using different data
models. Since conceptual models are not data models they do not have any particular representation for “data instances”
of that model. Instances of a conceptual model would be the real things in the real world os a possible world based on
real world concepts[CC57] . The real-world concepts are the “pivot points” between the data representations. Of course
implementations may automate data models that correspond closely to conceptual reference model, but that is outside of
this specification.

Due to the various ways to represent information, mappings can become complex. The UML representation of mappings
simplifies these mappings as much as possible. Note that details of the mapping relations are defined in the profile
specification.

7.31 Structure of Rule Specifications

<<Rule Model>>

<<Pattern Rule>>
* <<Pattern Variables>>

<<Mapping Rule>>
<<Pattern Variables>>

<<Represents>>
* Concrete types

<<Match>>Rules
Associations
Relationships

* Associations
* Relationships

* Reference types

Figure 24. Structure of Rule Specifications

There is an expected structure for defining rules. This normally starts with a <<Rule Model>> package that contains
pattern and mapping rules. Note that any “namespace” can contain rules, including classes. By default, rules will hold
within the namespace they are defined in but another namespace may be specified by setting the <holds within> tag of a
rule. Packages stereotyped as <<Rule Model>> are considered to hold universally within any model in which they are in
context. Within a rule context, such as a <<Rule Model>> there may be generic rules marked as <<Pattern Rule>>,
<<Represents>> rules or <<Mapping Rule>>s.

<<Pattern Rule>>s and <<Mapping Rule>>s contain <<Pattern Variable>>s that define the pattern of the rule. Pattern
Variables can be UML “Parts” (which are properties), connectors and connector ends. There are various stereotypes and
tags for Pattern Variables to further define their effect on the pattern. A <<Mapping Rule>> may also contain
<<Match>> rules which specify how different Pattern Variables may represent the same informaiton. Mapping rules are
bi-directional and may reflect changes between “either side” of the mapping.

The difference between a <<Pattern Rule>> and a <<Mapping Rule>> is that a <<Pattern Rule>> simply states
something that must hold (be true) within a model. For example, that fish can swim. A <<Mapping Rule>> creates a
correspondence between different representations of the same facts using <<Match>> rules.[CC58]

Semantic Modeling for Information Federation (SMIF) 0.9 213

7.3.2 Rule Model

<<Rule model>> is a stereotype of Package to indicate that the contents should be asserted as rules.

—

«Rule Models

SIMFProfileToModelMapping

Figure 25 Example Rule Model

The package SMIFProfileToModelMapping is a rule model and the enclosed rules will hold within any model in which
it is included.

7.3.3

The foundation of mapping is the <<Represents>> dependency between classes. Represents asserts that a particular type
found in a concrete (logical or physical) model represents information about a real or abstract concept in a conceptual
reference model. By default <<Represents>> does not implement a mapping, it defines what elements can be mapped
and thus restricts mappings. For simple “one-one” mappings there is an optional tag for <<Represents>> to <<map-
all>> known instances of one Class to another.

Representations

Example

package Examples [@ Activity Represents lJ
A

| ActivityType = L

R
[<<Represents>>

Rule
«Represents»

[Canceptual Model

\ _)Event

Map Rules)
|
|
|

|
«Mapping Rule»
| Activity Map Rule

Figure 26 Activity Mapping Summary Example

The above example shows that an “ActivityType” from NIEM-Core represents an “Event” as defined in the threat/risk
conceptual model. By convention we show the represents dependency as a green dashed. Representations provide the
most abstract level of mapping. This diagram also shows that that there is a more detailed activity Match Rule for the
same types which will map the properties and relationships between these types.

What this means is that some ActivityType instances represent some information about events in “real world” activities.
Note that ActivityType may also represent other things, but that not shown in this example. Based on the SMIF mapping
riles, this <<Represents>> also implies that relationships involving an event can be validly mapped to relationships
involving an activity and that properties of an occurrence can validly be mapped to properties of an activity,
<<Represents>> relations provide type-safety for mappings.

What this does not say is that ActivityType and Event are equivalent and can necessarily be mapped 1..1. How they are
mapped is detailed in mapping rules. However, if the <map-all> tag of <<Represents>> is set true then ActivityType and
Occurrence will be asserted as being mapped 1..1, bidirectionally (mapping of types and properties is considered
independent, each property must also be mapped). Note that <map-all> implies nothing about the properties and
relationships, only the mapped types (each type, property and relationship is an independent concept that is mapped
independently).

214 Semantic Modeling for Information Federation (SMIF) 0.9

.¢STEFEDI}"BED L «Representss
Role: [P == em e em e e e -4 Role
[Cl::si ‘ .
Figure 27 {map all} Example

In the figure above, all UML classes stereotyped as <<Role>> will be mapped to the Role class in the SMIF model.

7.3.4 Mapping Rules

The detail of mappings happens in classifiers stereotyped as <<Mapping Rule>>s. Mapping Rules define patterns of
concrete types and patterns of reference concepts that have corresponding <<Match>> rules. The <<Match>>
correspondence rules do the real work, mapping element by element.

Mapping rules are, externally, not that interesting. They are just a classes or components stereotyped as <<Mapping
Rule>>. However, note that Mapping Rules may specialize other rules — in which case they include the more general

rule but may restrict the <<Match>> variables.
«Mapping Rulex
Activity Map Rule

Figure 28 Representation Rule External Example

The above defines a mapping rule for activities that is an assertion that the enclosed pattern must hold and provides a
context (in this case the enclosing package) where the Match Rules are asserted. If we look inside the Activity Match
Rule we see the structure.

class Activiy Map Rule[[y Activity Map Flulau

eMaichs
MIEM Activity : Activity Type

«Matchs

Occurrence : Occurrence
|

" cation - i e Tl;neio—-.'l } PRty br:.’; i [.'l.l

|

] |

Activityliame : TextType [0.7] | has name : Name [*] | |
|

|

|
" ActivityDescriptionText : TextType [0.°] | | described by : Information Object ['] |

| |

| X |

ActivityCategoryText : TextType [0.."] fie, categorized by : Category [] I

» : | . |

| foccurs on : Time Point | I

|

Activi ion [0.7] ¢

Figure 29 Representation Rule Internal Structure

Semantic Modeling for Information Federation (SMIF) 0.9 215

class Activity Map Rule [Activity Map Ruleﬂ

******** o «Matchy N
«Focus» «Focus»

NIEM Activity : ActivityType : Naming names | OTREvent : Event

[
«Focus» [has name «Focus [
- «Match» RIP0CUSY
mapping pattern = Concrete | LEVEM Name : Name | mapping pattern = Reference [
[
[

{property path = ActivityName} |
«Excludes» I
- dentification igentifies |

identified by
; «Match» [1D:1dentifier ‘
{property path = Activityldentification} |

[

|

|

|

|

[

[

[- .
‘ .) : Definition defines |

‘ | «Match» {property path = text definition}. defined in |

|

|

[

[

|

|

[

[

| Event Definition : Definition ‘ [
|

‘ : Extent of Type categorizes |

| {property path = ActivityDescriptionText}

has type [
Category of Event : Category ‘
«Match» «Pattern Variable» I
{property path = ActivityCategoryText} explicit = true |

«Match» «Subsets»

[Actual DateTime : Time Point ‘
{property path = ActivityDateRepresentation} ‘

L —— e exists for . (
interval of Event is Actual : Actual Event ‘

: Entity Exists for Interval

Figure 7.1: Representation Rule Internal Structure

The above example is the internal “structure” of the Activity Match Rule. In this case the mapping is very 1..1 and
simple. Inside of the rule we see “parts” that represent “ActivityType” named “NIEM Activity” and “Event” named
“OTR Event”. The green line between them is a “Match” rule, represented as a UML connector stereotyped as
<<Match>>. This states that in this pattern NIEM Activities and TR Events map 1..1. We could also have put filter
constraints on that mapping, but in this case did not.

We also see “<<Focus>> on “OTR Event” and “NIEM Activity”. Focus defines the “starting points” for the for each
side of the mapping pattern where one focus is the “Concrete” information model and one is the “Reference” conceptual
model. A SMIF conformant mapping engine will find all instances of “Event” (in any mapped data format) and map
those to NIEM Activity. It will also find all NIEM Activities and map them to Events. All other parts of this mapping
become relative to the <<Focus>> elements.

Related to both NIEM Activity and OTR Event we see other variables. The black lines show how instances of each
variable will follow associations and relationships to populate other variables. Each black line is an instance of a SMIF
relationship and as such also a pattern variable. Relationships between variables can be folloowed in the same way that
relationships between actual entities could be followed.

The green lines create mapping <<Match>> assertions between those variables within the context of this rule. The
<<Match>> assertions may connect directly to a variable or to a property within that variable, denoted as a “property
path”. (Note that in UML it is not possible to show the connection directly to the contained variable — this limitation has
been addressed in SysML)

Thus within this rule NIEM “ActivityName: maps to “has name” based on the <<Match>> between “property
path=ActivityName” and its connection to “Event Name”. Event name has a “Naming” relationship with “OTR Event”.

The important point to remember is that mapping any fact requires that the types are compatible. That type compatibility
is defined by <<Represents>> rules between the types. The requirement for type matching may be overridden by setting
the <coerce> tag of the <<Match>> rule, but in most cases type safety of <<Match>> rules is desirable.

To allow for type compatibility, a <<Match>> correspondence is conditional, the types of the mapped elements must
either match or have a <<Represents>> rule that allows them to be mapped. If, for example, an event had an identifier
that was an image and NIEM did not allow for image identifiers, that “fact” would not be mapped. Of course, other rules
could be constructed to allow for some mapping convention in this case, but SMIF will not force a <<Match>> where
the types are not compatible (there is a way to override this with “coerce”, which will be explained below).

216 Semantic Modeling for Information Federation (SMIF) 0.9

Mapping for primitive data types, such as strings and numbers, may be provided by the mapping engine implementation
based on each mapped technology. This allows, for example, an identifier that is represented as an integer to be mapped
to a string.

In that there may be multiple <<Match>> rules between the same thing, one can be marked as the <<Default>>. A
default rule will be applied only if no other rules have fired. In the example above the “Activityldentification”/”ID”
<<Match>> is a default. This is because a name is also a kind of identifier so ID will not include names.

7.3.5 <<Select>> Variables

The foundation of SMIF rules is patterns. When a rule is asserted a SMIF implementation attempts to “select” the
pattern based on existing information and then “assert” that the pattern is “true”. The <<Focus> and <<Select>>
elements are those that must pre-exist for the pattern to even be considered. Relating this to a SQL Query, the
<<Focus>> would be similar to the “FROM?” clause and the <<Select>> elements would be in the “Where” clause.

If there is more than one related <<Select>> element, they must all be “true” for the pattern to hold (be asserted). If
there are any constraints for the <<Focus>> elements they must also hold. Constraints include condition expressions, the
type(s) of the Pattern Variables and multiplicities.

Once a pattern is selected, all properties, relationships and subsets from the <<Focus>> and <<Select>> elements are
“filled in” from existing information by following the associations, relationships and properties defined in the pattern.

What happens if, as these other elements are being filled in, some other constraint is violated? This depends on the kind
of rule. For a general pattern rule the constraint will be asserted — made to be true by attempting to create (assert) each
required element. In the case of a mapping rule the rule is in an error state, the behavior of an implementation in
response to an error state is implementation specific.

In a mapping rule, after the <<Focus>> and <<Select>> elements have been validated and any relationships followed,
the <<Match>> rules for the pattern are applied, asserting the information in the corresponding concrete or reference
model.

Note that for a mapping rule there will be two “sides” that are matched — the “Reference” side and the “Concrete” side.
Each “side” is considered a separately selected ssub-patter. Sides are determined by the “mapping pattern” property of
the focus variables.

Semantic Modeling for Information Federation (SMIF) 0.9 217

class Equivalent property chain mapping [@] Equivalent property chain mapping]J

«FoCUSH
Eqiv properties ; Equivalent
{mapping pattem = Reference}

constrained by constrained by

conslraing

«Selects
SIMF-Primary : Property Type [1]

«Focusy»
Chained property : Equivalent Property
{mapping pattem = Concrete}

constrains

|

| «Selects
| SIMF Chain : Traversal
|
|

traversed by

«Selecty
SIMF-Secondary : Property Type [1.."]

traverses through

Figure 7.2: <<Select> Example

The example above shows vary specific match pattern on the “Reference” SMIF model side, there must be a pattern of
an “Equivalent” constraint that constrains exactly one “Property” and also constraints exactly one “Traversal”. These
patterns are very specific because there are very specific ways to represent general concepts (like equivalence) in the
UMLprofile.

Once a pattern on one side is matched, the UML side is “asserted”, creating the required elements. In the opposite
direction, only an Equivalent Property with a “chain” will be asserted on SMIF.

7.3.6 Multiplicity constraints in patterns

Pattern variables may be bound to zero, one or more elements, each one describes a set. It is sometimes necessary to
constraint pattern variables to be bound to a specific number of values. This may occur either in matching the pattern or
as the result of following various paths (associations, relationships and characteristics). The same multiplicity constraint
that is used to constrain other properties, such as on the ends of relationships, may be used to constraint pattern
variables. Multiplicity constraints may also be used on the “ends” of connectors between pattern properties, to constraint
the number of relationships (actual ground facts) that must exist between the pattern properties.

Setting the multiplicity constraint of a pattern property constrains it to have the specified set of values. If a <<Select>>
is constrained, the pattern must match the constraint. If not a match, the pattern multiplicity will be satisfied by the SMIF
implementation creating the required elements. If, for any reason, this or other constraints cannot be satisfied the pattern
is a violation The method for handling constraint violations is not specified.

218 Semantic Modeling for Information Federation (SMIF) 0.9

class Equivalentwith ,,';E1' lentwith mappi ,u

ML ‘ SIMF

«Pattern Elements «Matchn)
sMatchs T SIMF 2 Ecquivalent

UML Dep : Dependency
Type = Bquivalent Wit}

constrained by

directedRel ationship supplierD ependency

constrains

«Matchs
Equivalenent things : Ertity [2]

«Mapping Rules
subset : List First

supplier
UML-From : Named Bemert [1]

remainder]

first : Brtity [1]

target
UL -tc : Element [1]

szcond @ Entity [1]

Figure 37. Example of setting multiplicity constraints on <<Match>>

In figure 218 the above example a SMIF Equivalent has exactly 2 <constrains> entities. This is the condition for
matching the pattern. This matching pattern then maps the Equivalent constraint to a UML dependency stereotyped as
<<Equivalent with>>.

Once these base patterns are mapped the two mapped entities will be mapped to the <supplier> and <target> of the UML
dependency via a “List First” rule. The List First rule separates a list into its first and remaining elements.

7.3.7 Subsets of Pattern Variables

Conceptual models use sub classing, multiple inheritance, roles and phases to more accurately and intuitively represent
the domain of interest. Many data technologies do not support these concepts and even if they did, would probably
structure implementation classes differently. In other cases, there may be restrictions on the “extant” of what maps to
what that require calculations or other constraints. To provide for these cases we use <<Subsets>> in mapping patterns.
A subset defines another part (property) that holds a subset of the instances of the superset part, based on the type,
relationship values and other constraints of the subset part.

To understand this feature we will first look at models for “Entity” and “Actor” in NIEM and the threat conceptual
model, respectively.

Semantic Modeling for Information Federation (SMIF) 0.9 219

package NIEM Entity [[g) NEM Ermtyy

| EntityType

/EntityRepresentation [0..”]
Entity AugmentationPoint [0..7]

«PropertyHolders
EntityRepresentationPropertyHolder
/EntityRepresentation [0.."]
EnttyOrganization : OrganizationType [0..%]
EntityPerson : PersonType [0..]

Figure 33 NIEM Entity Example

In NIEM, an “EntityType” has a “substitution group” property with properties that can be “EntityOrganization” or
“EntityPerson” to allow the entity to represent one or the other. The general rules for mapping NIEM state that

substitution groups are considered subtypes of the primary type.

package NEM Entity [[g]) Conceptuamcwru

Actor

[Organimtion | ‘Animal | ‘Automaton |

A

Figure 34 Conceptual Actor Example

In the Threat conceptual model “Actor” is a Supertype of Organization and, indirectly person. It is also a Supertype of
“Automaton”. An Automaton can’t be an actor in NIEM so it will not be mapped (However we could define a NIEM
extension to allow this).

We want to map actors to NIEM entities, but see that they are very different “shapes”.

220 Semantic Modeling for Information Federation (SMIF) 0.9

class Entiy Map Rule| El Entity Map Ruieu

«Matchs " aMatchs |

I'
NIEM entity : EntityType | [an actor : Actor |
S] — «Subsetofs| [«Subset ofs
| «PropertyHolders
| : EntityRepresentationPropertyHolder
R e e — e

I «XSDProperty:

. o= -
| EntityPerson : PersonType [0..7] | Iaperson i |

1 an -organization - argi;ﬁiza_tiog |

Figure 35 Subset part example

ERINT3

In the above example we see the actor - EntityType mapping. Notice “a person” of type “Person”. “a person” is defined
to be a <<Subset of>> actor — that is every actor that is of type “Person” will populate the “a person” part. If an actor is
not a Person, “a person” will be null. “a person” is then mapped to “EntityPerson”, a property of “Entity” by way of the
substitution group (sorry that this gets into some NIEM substitution group details, but you probably get the basic idea).

Likewise, “an organization” will map to EntityOrganization iff “an actor” is an Organization. Note that if “an actor” is
neither of these, it will not map to any NIEM property.

Note also that there could be other constraints on the subset parts, such as required relations or constraint expressions.

7.3.8 <<Pattern Variable>> computations and constraints

class Organization Map Rule | i Organization Map Rule! iiﬁuudla

sMatchs
organization : Organization

MIEM org : OrganizationType

___________________ | [concition = availabiltysdey] |

T «sebsetoh]
is Organization : ExistsRule |

|
B 1 |
_____________ isitoils| - by : Identifier [| |
. {type = Local idertifer] e I
g yee B4 | {type = Tax ldensfiontion] |
________________ |

= ype [0.] contact via : Contact Means ['] | |
xaizhal B {ediion = avadabiltysprimary} — ST] I

- |
H Type [0.7] |
————————————————————— | [—————— I
€ ype [0.77 || |
|

Organizationincorporatedindicator : boolean [0.] |

exisis : Bockean — slemant
______________ E3 inc: O |
I]
e incorporates |
e 2 «Equivalent Withs _ . =
incorporation : lncorporation | _ . — — =
OrganizationincorporationDate : DateType (0.5 e Tine Pt |
______________ ! | incorporated by
| ————

______________________ | incorporated by : Geopolitical Entity I
___________ |

Figure 36 Map constraints example
To continue the tour of the primary mapping capabilities we will look at a subset of the “Organization” mapping.

Note the “type="on two maps to “identified by”. In the conceptual model there are subtypes of identifiers. In NIEM
there are special properties for some of these identifiers. The “type=" constraint on a map says that the map will be
constrained to the type (on the specified end) of the actual instance matched the specified type. So

Semantic Modeling for Information Federation (SMIF) 0.9 221

“OrganizationLocalldentification” will only map to “identified by” if the type if the identifier includes “Local
Identifier”. Likewise, “OrganizationTaxIdentification” will only map to “identified by” if the type includes “Tax
Identifier” (remembering that a SMIF concept instance can have multiple types). Likewise, the reverse is true; those
properties will “assert” the type of the identifiers they reference.

On the maps to “contact via” we see “condition=". Condition is a tag of <<Pattern Variable>> that references a UML
expression. The conditions referenced are properties of the association between an organization and “Contact Means”.
The maps will be constrained to the “availability” property is set as indicated. Likewise, if an organization is being
created, that property will be set by the same condition.

Note that “inc” is a subset of an organization only if it plays the role of an “Incorporated Organization”. In NIEM there
is a Boolean set if the organization is incorporated. The “ExistsRule” is a computation rule (that is its implementation is
outside the specification). But in this case ExistsRule’s behavior is defined — the exists Boolean will be true when the
mapped “element” has some value. This results in the NIEM “OrgainizationIncorporatedIndicator” corresponding to the
organization being incorporated.

If the organization is incorporated it will have an incorporation relationship to its incorporating body (incorporated by).
That incorporation relationship will contain its date of incorporation, which is mapped to the NIEM property. In UML
association classes have to be put into a structure like this in two pieces, the “line” and the “box”. Since both the line
and the box represent the same “fact”, they are asserted to be equivalent — this is only required when association class
properties need to be accessed and is required because UML has no way to show connectors as association classes.

The end result is that the more “flat” representation of an Organization in NIEM is mapped to the concept model.

7.3.9 <<Pattern Variable>> explicit

Most elements are mapped regardless of their source — explicitly asserted in a model or derived based on rules. There
are times where only explicitly asserted elements need be mapped. In this case the element is marked with the <explicit>
tag as TRUE.

class Is in context mapping [m Is in context mappmgu

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ ™ g T TN

[UmL |’su.1F N _
[: NamedElement I SIME:: Anything

| I !
|) | !
| contextualizes |
| I
| I | :
| |
| |
supplierDependency | |
I «Pattern Elements | ! «Match» [
| «Matchx» | «Representss *In Context
- —— . ——— — — — -1 |
| : Dependency I fexplicit)
| |{type = Is In Context} | | |
| cllentD_ependency I | I
I I
|
| I : :
| client | | in context of |
: Namespace i ! : Context | |
| — el : — !
| l |
TR ol iy R Camalr D i o LS e S LS g LTS R P LT g T

Figure 41 Example of "explicit" Pattern Variables

The above example shows that the “in context of” relationship in SMIF should only be mapped to UML if it is explicitly
asserted.

222 Semantic Modeling for Information Federation (SMIF) 0.9

7.3.10 Pattern Precedence

It is possible for more than one pattern to match for the same set of values. The general rule is that all patterns that
match will execute. Where this may produce redundant elements a pattern may either subtype or subsume another.
Where a pattern subtypes another and the more specific pattern matches, the more specific pattern will include the rules
of the more general pattern.

«Mapping R ules
Activity Map Rule

«Mapping Rules
Incidernt Map Rule

Figure 46. Example of Pattern Generalization

An incident is a kind of activity. The incident rules subtypes and subsumes that activity map. An activity that is an
incident will use the incident Match Rules as well as the sub-rules defined within activity.

Where a pattern uses a <<Subsumes>> dependency, if the <supplier> pattern matches it will prevent the <target>
pattern from executing for the same set of values.

«Mapping Rulexn
Equivaent with mapping

N«Suhsumeﬁn

«Mapping Rulexn
Equivalent property mapping

Figure 47. Example of Rule Subsumption

Using “Equivalent With” is more general but >Equivalent Property” more compact. If equivalence can be expressed
with “Equivalent Property” it subsumes “Equivalent With”.

7.3.11 Generic Rules

Most of our examples have used mapping rules. Rules are also generic patterns that can be asserted to hold within some
context. Generic rules generally use quantifiers rather than <<Match>> but can be stated either way. A quantifier defines
a pattern property that contains a set of instances defined by the property type. The quantifier specifies how many
instances will be in the set from none to all.

Semantic Modeling for Information Federation (SMIF) 0.9 223

package Generic Rule Examplyd Manu

cenumerations
Person .
+h ofsex sex
aifihiies .
+5EK SRR it era for FE@ls
male
female
ather
‘ Wan ‘ ‘ Wo man ‘
cRulen
Man rules

«Pattern Elements
all men @ Man
fquantifier = Al}

Figure 48. Generic Rule Example

Figure 47 provides an example of a generic <<Pattern Rule>>. The rule states that as part of the definition of the class
Man, the “Man rule” applies which says that all men <is of sex> male. The Pattern Variable “all men” has “quantifier =
All” which is really what makes it represent all men, not the name. “all men” then has a relationship to a constant “sex =
male” (the default value of a property is considered its value). The result is the “assertion” that all men will have the
same sex.

Note that more than one property may be quantified, for example we could say “All men like at least one supermodel”
by quantifying “a supermodel” with “quantifier = There exists” and creating a connector “likes” between them. Options
for quantifiers are: None, There Exists, Exactly One, Some, Most, All. Note that for an interpretation in first order logic,
There Exists, Some and Most are the same, even if they may have an intuitive distinction. In other logics concepts like
“Most” may offer a default.

7.3.12 Facades and Representation Computations

In some cases, it is desirable to have mapping rules as “reusable pieces” that can provide a “Face” to a model that fits
better for one or more mapping rules. There is also the case where these rules fall outside of the expressive power of
mapping rules and are best done in calculations (program code or fUML models).

Facades provide for making a new “face” of either a conceptual model or data model element. A Fagade is a class with
additional properties and/or relations that can be derived from the element it represents. Either mapping rules or
computations are then used to “populate” the facade or map the facade back to what it represents. The facade
implementation keeps the fagade properties consistent as any connector implies change in a property value.

224 Semantic Modeling for Information Federation (SMIF) 0.9

package Injury|[Person Injury Facadey

Harm
(Conceptual Threat Risk Model Generic Concepts.Objectives)
{desirabiiity<0}

&

«Facadex»
PersoninjuryFacade

{subsets }
1 ”l

Person
(Conceptual Threat Risk Model.Generic Concepts.Persons)

Figure 42 Facade Example

The “PersonallnjuryFacade” above represents the concept of “Harm” but only where the harm impacts a Person. In
NIEM, injury is only considered relative to a person — so this fagade provides such a “View” of the conceptual model,
harm restricted to personal injury. In this case no additional representation rule is required, but such a fagade could also
define new properties or associations that would be populated in the same way as a data model.

Note that in this case the <<Represents>> relation is applied to a generalization to assert that “PersonInjuryFacade”
includes all of the features of “‘Harm” and is also a representation of it.

«Mapping Rule»
«Facaden
Telephone Number Facade

extension

«Rulen
Rule Computation

I postal address
«Mapping Rules
aFacades
Postal Address Facade

recipient name
country ID
post code

M state_province ID

Facades can also use “Computations” or Representation Rules to define their properties.

Figure 43 Computation Facade Examples

Semantic Modeling for Information Federation (SMIF) 0.9 225

In the above example both a telephone number fagade and address facade are “computed” based on combining both a
structured and unstructured representation of telephone numbers and addresses. The specific computation is external to
the specification and defined by implementations. These implementations could be implemented in any language,
including “ALF”, the executable language of UML.

The mapping engine is responsible for implementation of computation behavior and should update a computed Fagade
whenever any of its elements changes (some implementations may group such changes in a transaction).

In summary, facades and computations provide for reusability and extensibility of mappings.

226 Semantic Modeling for Information Federation (SMIF) 0.9

7.4 SMIF Profile::SMIF Patterns Profile Reference

The SMIF rules profile defines the way to model rules and mapping within and between data sources via a conceptual
model.

7.41 Diagram SMIF Patterns Profile

package SMIF Pattern Profile [SWIF Pattern F‘roﬂleu

|Stereotypes Defined or used

3
|
| «Metaclass» «Metaclasss «Metaclassy «Metaclassx» «Metaclass» «Metaclasss
| Dependency Generalization StructuredGi; fi [al Property ConnectorEnd I
|
| I
| |
«stereotypes «stereotypen wstereotypen astereotypen astereotypen |
|| Subsumes Represents Pattern Pattern Variable Match End
| [Dependency] [Dependency, Generalization] [StructuredClassifier] [Connector, Property] [ConnectorEnd] |
2 es tes |
| +condition Specificati +condition : ValueS ication +condition : ValueSp on
| +map-all : Boolean +gualification : Variable Qualification +property path : Property [*}{ ed,nonunique} |
+explicit : Boolean [0..1] +asserted type - Classifier |
| «stereotypes +computation : ValueSpecification +computation : ValueSpecification
| ps—— “Metaciases Pattern Rule +value : InstanceSpecification |
| Model Classifi [StructuredClassifier] T |
= 2 stereotype:
| [Package] +holds within : Namespace ¢ Subst:t: ? |
=5 . wstereotypes |
| |rnamesp: eftx : String Select [ConnectorEnd] «Melaciasss
| T [Cennector, Property] Property |
|
| wstereotypes astereotypes wstereotypes
| Rule Model Facade Mapping Rule astereotypes wstereotypes |
| [Package] [Classifier] [StructuredClassifier] Match Excludes wstereotypes |
attnbutas [Connector] [ConnectorEnd] Focus |
| +strength : Assertion Strength attributes [Property]
| +coerce : Boolean attributes |
+mapping pattern : Pattern kind |
|
|
|
___ J
(UML Meta model classes used and interpreted without stereotypes |
| |
«Metaclasss «hetaclasss aMetaclasss aMetaclasss «Metaclassy |
| ConnectorEnd Dependency Expression Property Connector
| |
[Types Defined |
«Pattern Rules «enumerations
| Rule Computation Variable Qualification I
Select Concrete Global
| Optional Reference Local I
| Assert |
Negate
| Exactly One |
There Exists
I Al I
| |
.~ - - e e e = = -

Figure 1 SMIF Pattern Profile

Computation computes a value for the mapping end based on the expression applied to the mapped property or
relationship.

Where computation is used inverse mapping is not specified - any inverse mapping is implementation specific.

74.2 Stereotype Excludes

In a pattern or mapping rule, <Excludes> defines a pattern variable that represents a set of elements to be subtracted
from the set of elements on the opposite side of the exclude connector (note that this is set subtraction, not numeric
subtraction). Where more than one variable is is exclulded, the union of those variables will be used as the basis for the
substraction.

<<Excludes>> stereotypes the end of a connector that is to be excluded from the opposite end.
Base Classes

e Connector

Semantic Modeling for Information Federation (SMIF) 0.9 227

743 Stereotype Facade

<<Facade>> defines a classifier as being a view of (facade of) one or more other classifiers. Facades usually define
additional properties that match some external view of a conceptual model element.

A facade will represent the classifier for which it is a facade. A Facade will use one of two methods to relate the facade
properties to the conceptual Model:

* <<Pattern Rule>> using the facade.
* Applying the <<computation>> stereotype and Subclassing "Representation Computation"

Base Classes

° Classifier

744 Stereotype Match

<<Match>> defines an equality rule between two properties in a <<Mapping Rule>> - they must represent the same
information, perhaps using different representations.

<<Match>> may be used between sub-patterns, as is common for a <<Mapping Rule>> or within one model to equate
different representations for the same thing (e.g., property paths).

Base Classes

. Connector
Tag Definitions
coerce : Boolean

Where <coerce> has a value of TRUE a Match Rule will be evaluated even if the <from> is not type
compatible with the <to> type.

Where <coerce> is FALSE or unstated a Match Rule will be evaluated only if the <from> is type
compatible with the <to> type.

Type compatible shall be defined as one of: Being the same type, <from> being a subtype of <to> (as
defined by a type generalization rule), <from> being a representation of <to> (as defined by a
representation rule).

Representation rules applied to a supertype apply to a subtype.

745 Stereotype Mapping Rule

<<Mapping Rule>> defines a pattern structure described by a structured classifier that shows how both "sides" of a
representation (conceptual and reference) are related. Each "side" must match, including any traversals through
structures defined with properties and connectors. Such traversals are links which may also have conditions on the ends
to more precisely define the pattern.

The pattern is described using structured classifier properties and connectors.
The mapping engine ensures that the patterns match, bidirectionally.
Base Classes

° StructuredClassifier

Direct Supertypes

. Pattern Rule

228 Semantic Modeling for Information Federation (SMIF) 0.9

7.4.6 Stereotype Select

<<Select>> specifies an element in a structure that must match a data source for the pattern to qualify to hold.
<<Select>> is similar to an SQL where clause.

<<Select> is a shortcut for <<Pattern Variable>> qualification=Select

Base Classes

° Connector
. Property

Direct Supertypes

° Pattern Variable

7.4.7 Stereotype Pattern Variable
<<Pattern Variable>> further defines a connector or property within a pattern as a pattern variable.
Note that the UML default value may be used to set the initial value of a Pattern Variable for primitive values.

Base Classes

. Connector
. Property
Tag Definitions

computation : ValueSpecification
<computation> computes a value for the Pattern Variable based on the expression.

Where computation is used inverse mapping is not specified - any inverse mapping is implementation
specific.

condition : ValueSpecification

<condition> states a condition that must be true within the scope of the Pattern. This can be used for
pattern matching, setting values or restriction of paths.

explicit : Boolean [0..1]

If <explicit> is true, the Pattern Variable must be explicitly asserted as the indicted type, not derived or
inferred from a supertype or super property.

qualification : Variable Qualification

<quantification> defines the behavior of an element with respect to a pattern - how it impacts the
selection, evaluation or assertion of the pattern. Specifics are defined in each variable qualification
enumeration literal.

value : InstanceSpecification

Instance specification of a fixed value for a pattern variable.

7.4.8 Enumeration Variable Qualification

Variable qualification values define the behavior of an element with respect to a pattern - how it impacts the selection,
evaluation or assertion of the pattern.

Semantic Modeling for Information Federation (SMIF) 0.9 229

7.4.8.1 Literals

Select

Select is used in query and mapping patterns, all elements of the classified type that match the pattern are selected as
instances of the pattern.

Select may be considered a qualified "All". Select does not assert the existence of something, it determines the existence
of a pattern match such that other assertions may be made.

Where a pattern is asserted, "Select" variables shall be asserted.

Relationships between properties with <quantifier>=Select must hold between the selected properties for the pattern to
be asserted.

Optional

Optional is used in query and mapping patterns, the property shall be populated as a consequence of the pattern
matching.

Where a pattern is asserted, "Optional" variables shall not be asserted.

Optional is the default if no qualification is stated.

Default

The element will be asserted only if no other values are asserted within the pattern or as pre-existing assertions.
Assert

The property does not impact the selection of the pattern, it is an asserted consequence of the pattern.
Negate

The property does not impact the selection of the pattern, it is negated consequence of the pattern - it may not exist.
Exactly One

The existential quantifier limited to exactly one of a potentially larger set of the properties type.
There Exists

The existential quantifier - at least one of the properties type.
All

The universal quantifier - the quantified property is a stand-in for all elements of the existent of the quantified type

7.4.9 Stereotype Represents

<<Represents>> is an assertion that the source concrete type or feature provides a more concrete way to represent the
target reference type. Represents may be used within conceptual models or from a physical model to a conceptual
model.

. A representation that is a dependency or realization makes no assumption that the types are substitutable.

. A representation that is a generalization is substitutable for what it represents.

Base Classes

. Dependency
. Generalization

Tag Definitions

230 Semantic Modeling for Information Federation (SMIF) 0.9

condition : ValueSpecification

<condition> is an expression that must be true for the source to represent the target.
map-all : Boolean

<map-all> implies a direct mapping between instances of the types in both directions.

<map all> is equivalent to a mapping with a rule mapping properties of each type but is lower
precedence than other mappings - if types have a more specific map it will apply first.

7.4.10 Stereotype Pattern Rule
<<Pattern Rule>> defines a pattern that must hold true for the context of the rule.

A pattern rule is a pattern structure described by a structured classifier that shows how elements are related. Each
mapped element must match, including any traversals through structures defined with properties and connectors. Such
traversals are links which may also have filters to more precisely define the pattern. An implementation of SMIF may
ensures that the patterns are asserted for the scope the rule holds for.

Base Classes

. StructuredClassifier
Direct Supertypes

U Pattern

Tag Definitions

holds within : Namespace

<holds within> is the context in which a rule is asserted (required to be true). Anything contextualized
by the context is subject to the rule.

If not stated the rule is asserted by its owning scope.

7.411 Stereotype Rule Model
A <<Rule Model>> defines a package as containing rule specifications and asserts those rules to be true.

Base Classes

. Package

Direct Supertypes
o Model

7.412 Stereotype Subsets

In a pattern or mapping rule, <Subsets™> defines a pattern variable that represents a subset of another variable. The subset
may be constrained by a more specific type, expressions, values or required cardinalities. Where more than one variable
is is subset, the union of those variables will be used as the basis for the subset.

Subset stereotypes the end of a connector that is the superset.

Base Classes

° ConnectorEnd

Semantic Modeling for Information Federation (SMIF) 0.9 231

7.413 Stereotype Subsumes

<<Subsumes>> is a dependency between rules. When a rule subsumes another the subsumed rule will not apply (fire). if
the <subsumed by> rules applies (fires).

Where rules are also patterns, a rule may specialize another which will subsume the specialized rule as well as include
the generalized rule parts as parts of the specialized rule.

Base Classes

. Dependency

7.5 SMIF Profile::SMIF Computation Rules

Computation rules define mappings that are implemented via external methods. As such the implementation is defined
by implementations, not the specification.

7.51 Diagram SMIF Computation Rules

package SIMF Computation Rule[s SIMF Cormputation Ruley

«Rules
Rule Computation

«Rules
ExistsRule

«Mapping Rule
MaplD

«Mapping Rules

A . List First
identified : Classifier id : Classifier ligt [*] first [0..1]

remainder [*]

Figure 1 SMIF Computation Rules

7.5.2 Class ExistsRule
<<Exists Rule> is a rule to map the existence of an <element> to a boolean.
<exists> is true iff <element> is not null.

Direct Supertypes

. Rule Computation

Attributes
element

exists : Boolean

232 Semantic Modeling for Information Federation (SMIF) 0.9

7.5.3 Class List First

The <List First> rules will take the <list> property and place the first element into<first>. If <list> is empty, <first> will
be empty.

If there are more <list> elements than 1, all remaining elements are placed as a set in <remainder>.

If <list> is an un-ordered set the order will be indeterminate but repeatable.

<<List First>> is bidirectional and will compute <list> by appending <first> and <remainder>.

Note that this will act like a LISP CDR/CAR pair

Direct Supertypes

. Rule Computation
Attributes
first [0..1]

list [*]

remainder [*]

7.5.4 Class MapID

<<MapID>> is a rule where the source is an ID and the target is a class, maps an instance of the ID to an instance of the
class.

Direct Supertypes

. Rule Computation

Attributes

id : Classifier

identified : Classifier

7.5.5 Class Rule Computation

<<Rule Computation>> is an abstract supertype for a facade that includes external implementation. The implementation
is outside of this specification.

7.5.6 Class Summarize

<<Summarize>> is a rule that produces a natural language description of an element. Summarize may not be bi-
directional and is expected to have information loss.

<summary> is a summary of <element>.

Content of summary is implementation specific.

Semantic Modeling for Information Federation (SMIF) 0.9 233

Direct Supertypes

. Rule Computation
Attributes

element

summary : String

234

Semantic Modeling for Information Federation (SMIF) 0.9

7.6 Profile mapping to SMIF Model (Normative)

The following diagrams summarize the mapping which is further defined in the UML mapping model.

Note — this section is out of date and due to be revised.

7.6.1 SMIFProfileToModelMapping::High level representation

The following diagrams show the <<Represents>> rules defined between the profile and the SMIF model.

7611 Diagram: Anything

package High level representation [':ﬁ:‘, &,ﬂymngu

astereotypes
Anything
[Class] =
T = — _sEquivalent Withs
Efement f ______ «Representss T~ — _ e b
? RS = = = = :-E—-——--—-—-i L. ailappng Rukes
ValueSpecification I _________
+contextualzes
estereotypes | cRepresentss I Context [shlapping Rules
IeinContaxt | == == an an o - - - - -— = ———— - Is in context mapping
[Dependency) |
<ncontextof | 1.
| Context
Representss _ _ o = = =~ - I
.Wc& _______ aRepresentss i >
————————— ~# Laxical Scope !
1 zRepresentss = 2 e
ASIATEOLYDES | o o o o o o - -+ Term | «Mapping Rules
Synonym L I i
[Comment] -

Figure 1.

7.6.1.2 Diagram: Classes

Anything

package High level representation [Pﬁ;] Classesy

«Representss

Ehss}—-'—'—'——:;

e -]y [——————y S —— ‘ Wapmaig Riles

[Classitier = ; = __Rules 1
. g —«Fﬁpr;erﬁ»: _-__ e j Type Class mapping

«Mapping Rules
Class property mapping

Property hierarchy mapping

— R t O —
Generalization | —. — Er_ —— ..{Type Generalization Constraintl |,_ qunmr_rg Rtes =
| pping

Figure 2.

Semantic Modeling for Information Federation (SMIF) 0.9

Classes

235

7.6.1.3 Diagram: Lexical Structure

High level rep: ion [[55) Lexical y

|Concept Package «Represeniss

Package
[Package]
stinbuies
|+namespace prefoc - String «Mapping Rules
'_umm;lypen Containment mapping
Resource Re e
(MamedEiementl] _ _ _ o e e i i S e
. el Eeving Named element Mapping
«stereotypes attbuy
nbutes
External Reference «Representss +text defintion © Text
_ [Element] e = +exiernal reference - IR identifier
astrbutys +external term : Term
| +external reference : String

|+externai term : String

Figure 3. Lexical Structure

236 Semantic Modeling for Information Federation (SMIF) 0.9

7.6.1.4

Diagram: Patterns

package High level representation | Paﬁernsy

«stereotypes | «Representsa -
Mapping Rule _-____________..| Mapping .
[StructuredClassifier] '
astereotypes
Rule «Representsy -
[StructuredClagssifier] fe= == == == == == == == == == =y Pattern Constraint |
+holds wTrthin 3 _amespac:e
«stereotypes

Pattern Element «Representsa .
[Connector, ConnectorEnd, Property] f= == == == o= = = = |

=5

+type : Classifier
+condition : ValueSpecification
+default value : ValueSpecification
+guantifier : Quantifier =3
+strength : Pattern Element Strength —
+explicit : Boolean [0..1] = _«Representsxs
+ : ValueSpecification = -

—

—
~—

],

«Representss _ __ Pattern property

«Mapping Rulex |
Mapping rule mapping

«Mapping Rules
Pattern property il

astereotypes R -
Match
[Cennector, ConnectorEnd, Property]

«stereotypes «Representsy ;
3 —_——— e ———— acade.
[Classifier]
astereotypes
Represents

[Dependency, Generalization] e _“Rﬂreienti“ ey Representation Rule |
es

+condition : ValueSpecification
+map-all : Boolean

it
“::;:fr?}? | «Representss
o S S Pattern Proj Subset |
[ConnectorEnd, Dependency] |

es
+default : Boolean [0..1]

wstereotypes
Map

Represents:
[Connector] o e S Map Rule |
= oz |

+ype : Classifier

+condition : ValueSpecification
+default : Boolean

+coerce : Boolean

Property End
«Represent_e:o e |

— -

ConnectorEnd sk «Representsy

Binding

Connector i «Representsy

—— - Pattern Relationship

Figure 4. Patterns

Semantic Modeling for Information Federation (SMIF) 0.9

237

7.6.1.5

7.6.1.6

238

Diagram: Relationships

High level rep ion| [35] Relationsni U
—— e ___'_Represem:s

AssociationClass | = =~

«Representss
-

—— -

i e .
) S

«stereotypes =
ANnotation b e= o= == == - ;Relfes_emz _____ _4 Relationship I "I!GDP:;LI:UIE:
[Comment] I
wstereolypés
ANNOLAtIOn PrOPerty b we s m= == ;Relm_enh:: [—— -ﬁ&nl‘lﬂhﬂm Pmerlv[[«Mapping Rulexs
[Property] A iati i
{Mm Relationship Twel
Figure 5. Relationships
Diagram: Rules
package High level representation | (35} Rules |
estereotypes Represents «Mapping Rules
E,,m,m‘l——_____‘___l ______ Enumerated i o
[Dependency]
| estereatype A Representss
Equivalent Class D i
[Generakzation]
[astereotypes | | «Mapping R:t::n I
Equivalent Property «Representss Eauivalent L 2
O e e e Mapping Rules
Equivalent property mapping

aftnbutes
+equivalent to : Property [']
+chain ; Property [Jordered)

[Dependency. Generakzation]

<iapging Rules
~--a=] Eauhalen wih maing

Saiariolype «Representss
EQUIVAIENM It | = = e e o o o o o = = = —
[Dependency]
aslereotypes resens.
nl;bimwm.l_______(_m__;___
[Cependency]
«Representss
rrere——— I ot
Wmu.fauui;:mﬂ;a:::e i _:R_e_wuenm
IsDisjpint : Boolean [1] = ——
e = «Representss
IsSubstiutable : Bookean [0 1] strue [= = = =" =
e — sRepresentss
aslerealypes - —— o
Classifies s

-- ——
2 set disjoint ma

“'1(:Mrmn Constraint I | «Mapping Rules
| i :
Type C .
ARnouTes
~* +85 facet : Beolean = faise Generalization mapping

Figure 6. Rules

Semantic Modeling for Information Federation (SMIF) 0.9

7.6.1.7

Diagram: Types

package High ievel representation | @ Typuu
S i e et it <[Tyee | «Mapping Rules
Class mapping
ustereotypes «Representss
Union b o - —— —_———— == ——— Union Type
[Classifier] Lt
astereotypes «Representsy
T i it |
[Class] =
astereotypes sRepresentss
ieratction ([= L e g = e e
[Classifier]
astereotyper «Represents»
Phase ____________._____
[Class] (mag-am
Figure 7. Types

Semantic Modeling for Information Federation (SMIF) 0.9

239

7.6.1.8 Diagram: Values

package High level representation | Vuluesu

«stereotypex
Represents
VBOTYPEI | i s v i e R T e
[Classifier] = =T
«stereotypes
R
SRR P R
[Classifier] map-a}
astereotypes «Represents» =
BaseUnitType | — — ~— ~ ..o T~ T
[Classifier]
«stereotypes «Represents»
Quantity Kind _____:;_37____
[Classifier]
«Representsy
IR I | e e . i i i i e il ype
~ {rmag-2H)
Enumeration

«Representss

T] T] R ————— it ——— Value {En «Mapping Rules

umeration mapping

. s g |8 [g
| 2 3
\ /

«primitives «Representsy
Boolean =l {rap-al) -
«primitives BT
R [S~ -.'Rime"t‘“ I conversion
rRaent between primitive
il ._.._..‘.E“_...fs:::: — — |typesina
Real «Representss __ ow == technology to be
i W handiled by SIMF
«primitives jo s = < | implementation.
UnlimitedNatural -
aprimitives «Represents» —
String otk e

Figure 8. Values

240 Semantic Modeling for Information Federation (SMIF) 0.9

7.6.2

The following are the mapping rules that hold for mapping the SMIF profile to the SMIF model.

7.6.3

Class Annotation value mapping

SMIFProfileToModelMapping::Mapping rules

Annotation value mapping defines a direct correspondence between a UML <<Annotation>> stereotype of a comment

and a SMIF Relationship typed by a Annotation Relationship Type. It then creates the properties for the Annotation
Relationship Type and binds the subject of the annotation to the annotated element and the annotation property to the
string "body" value of the annotation.

Note that an annotation defines a property instance, it does not define a new property.

[Class Annotaton valoe mapeng| By Annctaten vaise mapeng 1]

[uuiL

Annotated UML : Element

annotatedElement

A_snnctatedEement_comment

comment |
«Matchs
Annatation comment : Comment

Tody : String [0..1] |

<Sabset ofa |

«laichs.

S S —

has tinding

bound to

binding

Baund in
ahisichy
SIMF Annotation : Relationship

beundin| categorzes
has type

binding : Binding |

“bound by
bncs

inverse property : Property | |

v srasey

property of
SHAF relationshi
T

fins propesty

aMatchs 1
p : Annotation Relationship Type %

SIMF : Anyihing |

sDajpint Wehs . =

annotation property : Annotation Property |

Annotation 5T : Annotation |

value for

Property ST : Annotation Property ||

e by ANNOAtGN

Bnds

bound by

beund ta

binding : Binding f. — —

Gnang

<Value |

«Disjoiet W |

Figure 1.

Annotation value mapping

package SMIFProfileToModelMapping::Mapping rules

Semantic Modeling for Information Federation (SMIF) 0.9

241

7.6.4

Class Association mapping

|' class Assoceton meppng| By Assccetenmeppng}] 20 — — — — — — — — —

Ju

Map al SIF relationship types to UNL associations. i the
reltonshio fype s used 03 the fype of a property. map Etoan |

«Pattern Eumerts
reference : Property Type Constraint [1.7]
[ipangth = Exas) |

Basccistion class

types |

| imengtn = Exets)
|

s of type |

is also s class : used as class

| ePattem Elements

Type |

aSutest ofs aSubset ofs |

alistchs “liaichs |Subset ote
LML : Association I SIMF ; i ip Type |
= | A

oxvma] o
} | '
| | a_sttriouts_classitier 1! Properties
) I
:I atiriute | ! : has property |
| end: Property | L SiMF end: Property | | :Annotation Relationship Type
] «Subsel ofa | -I ! | «Subsetofs | property of
:, b Properties
! N has property
: Property | : SIMF Class : Property |
] i o —_—]
! i

Figure 2. Association mapping

The Association mapping draws a direct correspondence between a UML association and a SMIF Relationship Type. It
maps each property of the association to a SMIF property.

SMIF does not distinguish between associations and association classes (all associations are essentially classes). As a
convention, a UML association class will be created only when the association is used as an type of some other property.

For annotations, UML <<Annotation Property>> corresponds with a SMIF Annotation Property as a property of a
Annotation Relationship Type.

package SMIFProfileToModelMapping::Mapping rules

7.6.5

Class Class mapping

class Class mapping[& Class mapplngy

[eMatche | «Matchy
«Matchx . j
UML : Class + SIMF: Ty-p-e
" {explicit}

Figure 3. Class mapping

UML Classes correspond directly to explicitly asserted SMIF types.

package SMIFProfileToModelMapping::Mapping rules

242

Semantic Modeling for Information Federation (SMIF) 0.9

7.6.6 Class Class property mapping

class Class properiy mapprg| [Class property mapping L}

Create a relabonship type for each awned property

oL

classifier

UML Class : Class. [1] |

-..| |Si.!F .

- SIMF Type : Type |
ok
N i of type

Vyou = Property Type Constraint —

states

o =
«Pattarn Elemnents

{amangth = Duatsut |

conatraned by |
| Rule consiraing |
[
i constrains
«Pattern Elements lu‘ﬂ
owner : Element + scope : Lexical Scope domain : Property I’
{svengih = Exst} 1 has property | <Patiern Eiements
o 0 DC'I‘\!U n Properbes. i v
e - rangth = Defsu
«Matche 1)
class property : Property property of
ownedElement il Definiion defines — : — 3
- SIMF Relation : Relationship Type |
I | Lt
1 I
: property of | <Sutiset ofs
1
il
L eMatchs
Pasern Element
me\e-nen: I «Subset ofs | FANGE property : Property s

[3rengih = Defact)
conmms

constrained by
: Property Type Constraint I“““

memberEnd preerry : :

- (L
range class : Clnslner }_|_|_ range type : Type — [types |

association |

|
|
|
|
I
I
|
I
|
I
hias propemy |
I
|
I
I
I
I
|
|
]
I
I

Annotation mu‘th‘m:‘hlo‘ Type
sMachs Pmuny p— | | EENEEERE :
: I | property of
Should not be associstion property - | | ! S CHAT RACPRTHY:Jhos preperty
‘will be taken care of by assocation. il
__ 4
Figure 4. Class property mapping

Properties of UML classes correspond with a pattern involving a relationship. SMIF conceptual models to not define

properties directly on types but each is an independent relationship type.

Each UML Property corresponds with a SMIF property with a type that matches the UML property type. The SMIF

property becomes a property of a Relationship Type with a "domain" property corresponding to the UML class owning

the property.

UML properties marked as an <Annotation Property>> Correspond to a SMIF Annotation Property and further classify

the relationship as a Annotation Relationship Type.

package SMIFProfileToModelMapping::Mapping rules

7.6.7 Class Containment mapping
class Contal t mapp =[@C tai ‘mappingu
«Matchs . ! «Matchs |
Any UML : Element (wangen Exis) ‘ Any SIMF : Anything
ownedElement —_— ™ defines
1 A_ownedElement_owner N : Definition
Don't create on
anything but mirror
owner |stmdure. defined in
UML Owner : Element } | SIMF Owner : Lexical Scope [
L

Figure 5. Containment

mapping

Containment mapping forces the UML ownership structure and the SMIF lexical structure to match.

Semantic Modeling for Information Federation (SMIF) 0.9

243

package SMIFProfileToModelMapping::Mapping rules

7.6.8

Class Enumeration mapping

class Enumeration mapping [E Enumeration mapping U

[«Matchs
‘ Make enum : Enumerated

This does not handle enumeration of non- “has assertion
.vaues «Matchs
: Assertion
holds within
«Matchs «Matchy fdefined in
UML Enum : Enumeration SIMF Value type : Value Type
ciussiﬂer ' has type
: A_classifier_enumerationLiteral : Type instance Relation
: Definition
enumerationLiteral categorizes

I UML Literal : EnumerationLiteral [,—'—SEJ_F Value : Value [2271¢S
L L

Figure 6. Enumeration mapping

Enumeration mapping draws a correspondence between UML Enumerations and a SMIF Value with an "Enumerated”

constraint.

While SMIF may enumerate non-Values UML does not support this semantic.

package SMIFProfileToModelMapping::Mapping rules

7.6.9

Class Equivalent property chain mapping

class Equivakent property chain mapping [zmr Equivalent property chain mapping U

. T aMatchs
| Eqiv properties : Equivalent

I
=Matchs ;
UML Property : Property | constrained by | constrained by

|

«Subset ofs

= aMatchs '
SIMF-Primary : Property | consirans

i Matchs
| H_BS_ '._'.t_ergot_fpe: qu._liualept _Pfo_pen_)r

|
|
|
I
’I constrains
I
"
|
1
11
/|
\

]

|

I

I

I

| | aMatchs |
| SIMF Chain : Traversal

| . traversed by
: e

I

I

Matchs

| chain : Property ['] | SIMF-Secondary : Property [1.]

|traverses through

R Rk e Tl el GG s O

Figure 7. Equivalent property chain mapping

Equivalent property chain mapping maps the UML stereotype <<Equivalent Property>> with a "chain" tag to a SMIF
"Equivalent" constraint constraining a SMIF Traversal of that chain.

The stereotyped property corresponds with the <constrains> property of the Equivalent constraint.

package SMIFProfileToModelMapping::Mapping rules

244

Semantic Modeling for Information Federation (SMIF) 0.9

7.6.10 Class Equivalent property mapping

class Equivalent property mapping [g Equivalent property mapping U

«Matchs

UML Property : Property

«Subset of»

| «Matchs
| Has Stereotype : Equivalent Property

constrained by

«Matchy
| SIMF-Primary : Property

| Eqiv properties : Equivalent |

consirained by

constiraing

«Matchs

SIMF-Secondary : Property [1.."]

“jconstrains

Figure 8.

Equivalent property mapping

Equivalent property chain mapping maps the UML stereotype <<Equivalent Property>> with a <equivalent to> tag to a
SMIF "Equivalent" constraint constraining a SMIF Secondary property.

The stereotyped property corresponds with the <constrains> property of the Equivalent constraint.

package SMIFProfileToModelMapping::Mapping rules

7.6.11

Class Equivalent with mapping

class Eguivalent with mapping [ﬁ] Equivalent with mapplngu

suppher

UML-From : NamedElement [1] |

UL |SF Sl
— | Match.

«Pattern Elernents | ‘ atc_v

eMatchs L
UML Dep : Dependency constrained by i
{type = Equivalent Wih] alatchs
direc ionshi suppherD
consirains
«Matcha

Equivalenent things : Entity [2] |

"~ «llappingRules |
subset:ListFirst |
|

first [0..1]

first : Entity [1] |

remainder [*]

SETms aSTScosTeeTs miemocosoos sovmecomes moeooozee amol

Figure 9.

Equivalent with mapping

Equivalent with draws a correspondence between a UML dependency stereotyped as <<Equivalent With>> and a SMIF
equivalent constraint with exactly 2 constrained elements. The first element is mapped to the dependency supplier and
the second element to the dependency target.

The "List First" rule is used to divide the list elements.

Semantic Modeling for Information Federation (SMIF) 0.9

245

Note that SMIF Equivalent constraints with more than 2 constrained elements will map to a generalization set.

package SMIFProfileToModelMapping::Mapping rules

7.6.12 Class Generalization mapping

The generalization mapping rule draws a direct correspondence between a UML Generalization and a SMIF Type
Generalization Constraint.

The UML <<Facet Of>> constraint corresponds with the "as facet" boolean of the SMIF constraint.

class Generalization mapping [E] Generalization m&ppingy
S R e ﬂl G o Mo S L\I
I I [
| r || f |
| UML subtype : Classifier }] | SIMF subtype : Type
| I
specific has specific
| P || pect - Specializations I
| |
I generalization l | has generalization !
«Subset ofs «latchs ' _ aMstchs !
| UML : Generalization — SIMF : Type Generalization Constraint | |
| generalization Il e imo]) |
as facet: an = false
| P o _f_' I
[|| |
| | : m———
| - has specialization | . 5 neralizations '
I
| general [has general |
| | uML superciass : Classifier '}l — i SIMF Supertype : Type :
[|| I
| Classifies Stereotype : Classifies ||l |
| || |
e) U I S e A/ W opogee Sepee o _smes mraes poges Seoll b
I cRules |
| :ExistsRule |
element D Eexists : Boolean
_ o —=—=F
Figure 10. Generalization mapping

package SMIFProfileToModelMapping::Mapping rules

246

Semantic Modeling for Information Federation (SMIF) 0.9

7.6.13 Class Generalization set covering mapping

class Generalization set covering mapping [Generalization set covering mapping u

SIMF

«hatchs
UML : Generalization set

«Matchs
SIMF : Covering Constraint

{condition = isCovering}

|
|
|
|
|
|
|
|

' [

' [

' [

' [

W = 1 constrained by hags covering

| isCovering : Boolean [1] = false |

] - — — — = - |

| generalizationSet |

| | constrains |

UML General : Classifier [1 T
| m l_l_'—(Covered:Type 1 |
general |

| | |
[b

generalization generalization | |

l | UML Covered : Generalization l |

[— b |

generalization |

| | |
[b

| — | | iz covered by |

| UML Sp C ! | Covers : Type |

| | (I |

| b |

S S VU VS SO S] Boers mors s s saire s s -

Figure 11. Generalization set covering mapping

Generalization set covering constraint draws a correspondence between a generalization set where isCovering is true and
a SMIF Covering Constraint.

The generalization set has a set of UML covered <<Generalization>>s, all of which must have the same <general>
Classifier, which is mapped to the <holds within> type.

The <specific> classifiers correspond to a set of <is covered by> types.

package SMIFProfileToModelMapping::Mapping rules

7.6.14 Class Generalization set disjoint mapping

class Generalization set disjoint mapping [[Generakzation set disjoint mapping 5]

«llatchs

1 «Matchs
LML Cemes SIMF : Disjoint
{eondition = sDijerd
has assertion consirained by
isDisjoint : Boolean [1] = false |
generalizationSet
helds within
umL :C fier [1] | super : Type [1] : Rule constrains
general
generaization generakzation
| uML Covered : Generalization
= generalization 5
specific Sonlrank =4
UML Specific : Classifier | sub: Type _|
Figure 12. Generalization set disjoint mapping

Semantic Modeling for Information Federation (SMIF) 0.9 247

Generalization set disjoint constraint draws a correspondence between a generalization set where isDisjoint is true and a

SMIF Disjoint Constraint.

The generalization set has a set of UML covered <<Generalization>>s, all of which must have the same <general>
Classifier, which is mapped to the <holds within> type.

The <specific> classifiers correspond to a set of <is covered by> types.

package SMIFProfileToModelMapping::Mapping rules

7.6.15 Class Is in context mapping

class Is in context mapping [& Is in context rnapp'mgy
e “(SIM_F___,_______.*\
| [NamedElement fny Aoy | |
| Lol | |
li e s
l suppwer | l contextualizes |
|
| | |
| | |
|
| |
supplierDependency | |
! | «Pattern Elements fi alatchs |
| «Match» L-l- «Represents» - : In Context
I : Dependency = TR i = {explici] I
| |type = s In Context} | : |
| clientDependency l | |
I I
| |
I I
| |
I client | I in context of |
| : Namespace] | | : Context |
| = | | |
N o | e e G e i d— a— TR am i — — — ——— | o— a—
Figure 13. Is in context mapping

Is in contest mapping draws a correspondence between a UML dependency with a <<Is In CContext>> stereotype and
an explicit "In Context" Relationship. The relationship is Explicit if it has been explicitly asserted, not inferred.

package SMIFProfileToModelMapping::Mapping rules

248

Semantic Modeling for Information Federation (SMIF) 0.9

7.6.16 Class Mapping rule mapping

class Mapping rule i [El Mapping rule i y
T TaMatens | - — === = —
| & g | aMatchy
e el | SIMF Mapping : Mapping
«Subset ofs - — — —
has assertion
o __—‘_ —— o : Assertion
T «Matchs |
| UML Mapping rule : Mapping RUle |r————
| l ho!d_s WEI‘IIFI
| Iaholds within : Namespace | 1 | : Context |
I —————— | | ——
L ee— =
Figure 14. Mapping rule mapping

The Mapping rule mapping draws a correspondence between any UML StructuredClassifier marked as a <<Mapping
Rule>> and a SMIF Mapping. The <holds within> tag then maps to the context the mapping holds within.

Any structured classifier may be created from SMIF.

package SMIFProfileToModelMapping::Mapping rules

7.6.17 Class Named element Mapping

class Named element Mapping | w Hamed element “lDDiﬂﬂy
eMatchs] «latchy [identifies
UML : SIMF : Entity
preferred for defines | describes
: Term Preference
has preferred term : Definition
| name : String [0..1] | prefered term : Term |
_______ L
defined in
[0.1] | scope : Lexical Scope
— = 1 described by
1071 & definition : Definition A
text definition : Text |
. s Bl
«Subsetofs «Subset ofs external IR
erence 5T : External Refe] I'enem'alte'rm:urm;
"external reference : String |
I ————
"external term : String '[
| Resource T :Resource
| identified by
| id: String | | SIMF id : IRI
Figure 15. Named element Mapping

package SMIFProfileToModelMapping::Mapping rules

Semantic Modeling for Information Federation (SMIF) 0.9

249

7.6.18 Class Pattern property mapping

class Pattern property mapping | §j Pattern property mapping]J

UL - y 1 sE — : . —
i «Patiern Elements ! SIMF Owning pattern : Pattern |
«<Matchs | T e S e e
UML Owning pattern : StructuredClassifier | | | has owning pattern
lype=Rulj | Iy Patiern Propertes
stuctoredCassiter| | |
Matchs
Iy owines property)
part (- aldatchy I
aMatchs i | SIMF Pattern Property : Pattern property |
UML Pattern Property : Property | | | |
S —— |
aSubsetofs | «Subsetof: ks |
: ExistsRule |

Dexsu Booktan

isport : Port !_“‘“_"’D is part : Boolean [0.1] J
==l

UML Stereotype : Patiern Element |
|
\

| quantifier : Quantifier [0.1] | |

{
|
explicit : Boolean [0.1] | !
|
|
|

constrans
condition
:Expression Hode |

constraned by |
L iTyee [soflyee BRI property Type Constraint |

|
|
|
|
|
|
|
|
|
|
default value : ValueSpecification - — — Used? 1! S T R
= - [
|
T
|
|
|
L
| T .

Figure 16. Pattern property mapping

Pattern property mapping makes a correspondence between any UML property that is <part> of a <Rule> and a SMIF
Pattern Property.

The owning StructuredClassifier corresponds with the pattern that owns the Pattern Property.

If the UML Property is stereotyped as a <<Pattern Variable>> the tags correspond with the explicit, quantifier,
condition, computation and has strength properties of the SMIF pattern property.

The <type> of the UML Pattern Variable is constrained to be a required <is of type> of the pattern property.

package SMIFProfileToModelMapping::Mapping rules

250 Semantic Modeling for Information Federation (SMIF) 0.9

7.6.19 Class Property hierarchy mapping

class Properly hierarchy mapping [) Property hierarchy mapping J

has g‘en!ral’

sMaichs Lhas general

SIMF-Property : Property

: Property Speciaizations

: Property ization C

"redefines : Boolean |

—— e

has generaization

: Property Generafizations

iUML ISMF
I
«Matchs | +
| UML : Property I :
redefinedProperty subsettadProparty |
I
I
|
| has speciakzation
I
I
I
| «Matchs
|
| L
property I

has specific

| subset property : Property I §
e R B

praperty

|

|

|

|

|

|

|

|

< b : |
redefines : Property | 4

I : Boolean = true |

[special : Property Generalization Constraint

ehiatchs

|

| SIMF Specific : Property |

has speciaization

redefines : Boolean |

e |

has specific

has generaization | . pronarty Generalizations

; : Property |

Figure 17.

Property hierarchy mapping

Property hierarchy mapping, for properties that have been mapped in other ways, maps UML subsetted properties to a
Property Generalization Constraint with redefines=false.

It also maps UML redefines properties to a Property Generalization Constraint with redefines=true.

package SMIFProfileToModelMapping::Mapping rules

7.6.20 Class Synonym mapping

class Synonym mapping [Synonym mappingu

Semantic Modeling for Information Federation (SMIF) 0.9

_________________________ ~
(urL i [SMF «Pattern Elements |
| preferred empty : Entity [0]
| Map a <<Synonym== _ |
{strength = Match}
| «Paﬂ:{rﬂil;:lentn comment to a term that is not | |]] |
| : Cc:lmment preferred. | preferred for |
' | x : Term Preference
| {type = Synonym) I |
| | {strength = Exists}
	has preferred term	
		«Matcha
	SIMF-Not preferred : Term	
'		
R ===] == = == —		
i ["body : String [0..1]	.	*text value : String [0.1]
) R et	G J	
!	-	
	identified by	
	: Identification	
I	identifies	
annotatedElement : Element [0..7]		
(e +		
' \
i T e — S e T o ety o B o Py By B <
Figure 18. Synonym mapping

251

Synonym mapping maps a UML Comment with a <<Synonym>> stereotype to a SMIF Term that identifies the element
that is annotated by the comment in UML.

A Synonym term is not a preferred term.

package SMIFProfileToModelMapping::Mapping rules

252 Semantic Modeling for Information Federation (SMIF) 0.9

[1] https://en.wikipedia.org/wiki/Mars_Climate Orbiter

CC1]Need to nail down our terminology and use consistently.
[cC2]Pete asserts the semantics are different — I don’t think so. Need to resolve.
cc3]Redundant and not well worded

cc4]This section is somewhat redundant with the specification introduction but you may want to include it for those
only reading this section. However, it should be consistent.

CC5]We have been using “real or a possible world”

cco]Perhaps a better example would be ones that did not share a direct common supertype — perhaps animal and
mineral.

[CC7]1By the way, when you paste in the diagrams — do it in SVG to make Andrew happy.

[cc8]Doesn’t seem right. Both are manufacturers.

[CC9]Not a great example in that the set is not complete.

Perhaps Silverware: Knife, fork, spoon? (perhaps not exactly true but more true). Remember the “Spork™?

CC10]Also not an example that fits the assertion. Perhaps the animal kingdom?? Or, Computer storage: Rotating or
solid state?

cc11]I would remove — not true for n-ary and would need to define term.
cc12]Don’t know that this is true, the representation should not change the semantics
cc13]Need definitions

CC14]May want to mention and make an example of the built-in annotation <<anything>> described by Definition.
Note that the mapping supports <<Annotation>> of these and also maps the UML documentation element to a
Definition which can be augmented by <<External Reference>>.

cc15]From pete:
“is a comment an annotation property”? Make it clear it is an annotation value.

[cC16]© Seems odd.

[cc17]Not sure this constraint is needed.

[cc18]Why would we jump to that conclusion? Seems like a mxing of semantics and would be non-obvious.
[cc19]Redundant.

[cc20]Could use your generalization set here.

[cc21]Changed picture

[CC22] don’t assume math people.

[cc231Somewhere these need to be defines, perhaps this is the place.

€C24]0ut of date — also, mixing <<Anything>> with this example may be more challenging.

Semantic Modeling for Information Federation (SMIF) 0.9 253

[CC25]Not true (was a change)

[CC26]May be to complex an example since you have others.
[€C271Only if 1+

[cc28]Pete: Bad term

[cc29]Hmmm. Could it be sufficient and not necessary?
[cc30]Should show “1”

CC31]Need to think about how much we -require-inference. I’'m not sure we should here. It could be just a model
validity check, other implementations could do inference. I think we should keep this very open. For one thing, this
could make it fall into the “ontology” category. This is true in other places as well.

[CC32]Said again.

[CC33]Again

[ccz41Pete: still not clear whether the sufficient condition is to have a contract with a Steering
Wheel AND a Windshield manufacturer

[CcC35]0ut of date

CC36]Can we not use the term in its definition?? Perhaps “be defining a path through other properties that have the
same starting point.

[ccariPete: NOt in example; in any case surely it will be applied to a property not a class
Cc38]More accurately — it has one tag value with 2 or more elements.

€C39]Don’t know where this restriction came from, seems counter-productive and may prevent some of the OntoUML
restrictions. REMOVE!

Cc40]1Should show for example. Also show property chain ST

[ccaiPete: how does this relate to previous section using the same stereotype?
cc42]Perhaps you could be less circular?

CC43]Again, don’t know where this restriction comes from or why.

[cc441Pete: NOt @ good example - these are synonyms
[cc451Remove or make optional to stay within normal UML
[cc46]More — what is a global property?

[cc47]facet (including roles and phases)

[cc48]<<Facet Of>>

[Ccc49]facet

[ccs0]facet

[Ccsi]facets

[CcC52]tbd

[CC53]tbd

[ccs4lbelow it says [RFC3987] We should be consistent.

254 Semantic Modeling for Information Federation (SMIF) 0.9

€C55]Tbd — really need to nail down.
CC56]A bit hard to read

[ccs7iPete: not so simple - semiotic triangle involved

consider putting in semiotic triangle picture and explanation.

cc58]Consider name change for one or the other

Semantic Modeling for Information Federation (SMIF) 0.9 255

8 SMIF Mapping to OWL 2 (normative)

Examples are given below that show the transformation of UML modeled in SMIF to an exported OWL 2 ontology. The
OWL ontologies are presented in OWL Functional Syntax.

The first diagram below, for a simple UML class, shows the ontology is transformed as the package containing the UML
class. Subsequent diagrams do not show the package in the diagram for the sake of brevity.

8.1 Class

zConceptua

Case 01
(uri=http://nomagic.com/ontology/example-case/case-01]

Person
(Case 01}

ontology(<http://nomagic.com/ontology/example-case/case-01>
Declaration(
Class(:Person)
)

AnnotationAssertion(rdfs:label :Person "Person"@en)

8.2 Class Generalization

Soccer Team
(Case 04)

Futsal Team
(Case 04)

ontology(<http://nomagic.com/ontology/example-case/case-04>
Declaration(
Class(:FutsalTeam)

Declaration(
Class(:SoccerTeam)
)

AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf(:FutsalTeam :SoccerTeam)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)

8.3 Class with Datatype Property

Person
(Case 02)

256 Semantic Modeling for Information Federation (SMIF) 0.9

ontology(<http://nomagic.com/ontology/example-case/case-02>
Import(<http://www.omg.org/spec/PrimitiveTypes/20100901>)
Declaration(
Class(:Person)
)

Declaration(
DataProperty(:hasName)

Declaration(
AnnotationProperty(<http://purl.org/dc/terms/description>)
)

Declaration(
Datatype(xsd:string)

AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(
:Person
ObjectIntersectionOf(
DataMaxCardinality(1 :hasName xsd:string)
DataMinCardinality(1 :hasName xsd:string)
)
)
AnnotationAssertion(rdfs:label :hasName "has name'"@en)
DataPropertyDomain(:hasName :Person)
DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description
<http://www.omg.org/spec/PrimitiveTypes/20100901#String> "An instance of String
defines a piece of text. The semantics of the string itself depends on its
purpose, it can be a comment, computational language expression, OCL expression,
etc. It is used for String attributes and String expressions in the
metamodel. "@en)

8.4 Class with Self-Referential Object Property

Person is related to
(Caze 02a) 7

ontology(<http://nomagic.com/ontology/example-case/case-02a>
Declaration(
Class(:Person)

Declaration(
ObjectProperty(:isRelatedTo)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)
SubClassOf(
:Person
ObjectIntersectionOf(
ObjectMinCardinality(1 :isRelatedTo :Person)
)
)

AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)
ObjectPropertyDomain(:isRelatedTo :Person)
ObjectPropertyRange(:isRelatedTo :Person)

Semantic Modeling for Information Federation (SMIF) 0.9

257

http://purl.org/dc/terms/description

8.5 Class with Object Property

Soccer Team consizgtz of | Soccer Player
(Case 03) c 11 (Case 03)

ontology(<http://nomagic.com/ontology/example-case/case-03>
Declaration(
Class(:SoccerPlayer)

Declaration(
Class(:SoccerTeam)
)

Declaration(
ObjectProperty(:consistsOf)
)

AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
SubClassOf(
:SoccerTeam
ObjectIntersectionOf(
ObjectMaxCardinality(11 :consistsOf :SoccerPlayer)
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)
)
)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertybDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

8.6 <<Anything>> with Datatype Property

«Anything»
Thing

+s mendated by : Thing{subsets is conferred by}

ontology(<http://nomagic.com/ontology/example-case/case-03a>
Import(<http://www.omg.org/spec/PrimitiveTypes/20100901>)
Declaration(
DataProperty(:hasName)
)

Declaration(
AnnotationProperty(<http://purl.org/dc/terms/description>)

Declaration(
Datatype(xsd:string)

)
SubClassOf(
owl:Thing
ObjectIntersectionOf(
DataMaxCardinality(3 :hasName xsd:string)
DataMinCardinality(2 :hasName xsd:string)
)
)
AnnotationAssertion(rdfs:label :hasName '"has name'"@en)
DataPropertyRange(:hasName xsd:string)
AnnotationAssertion(http://purl.org/dc/terms/description
<http://www.omg.org/spec/PrimitiveTypes/20100901#String> "An instance of String
defines a piece of text. The semantics of the string itself depends on its

258 Semantic Modeling for Information Federation (SMIF) 0.9

http://purl.org/dc/terms/description

purpose, it can be a comment, computational language expression, OCL expression,
etc. It is used for String attributes and String expressions in the

metamodel. "@en)

8.7 <<Anything>>with Self-Referential Object Property

«AWNNG» | s refated to
AThing 4 *

ontology(<http://nomagic.com/ontology/example-case/case-03b>

Declaration(
ObjectProperty(:isRelatedTo)

)
SubClassOf(
owl:Thing

ObjectIntersectionOf(
ObjectMinCardinality(1 :isRelatedTo)
)
)

AnnotationAssertion(rdfs:label :isRelatedTo "is related to"@en)

8.8 <<Anything>> with Object Property

is dissolved by
1.%

Liouid

Thing

Ontology(<http://nomagic.com/ontology/example-case/case-03c>
Declaration(
Class(:Liquid)
)

Declaration(
ObjectProperty(:isDissolvedBy)
)

AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(
owl:Thing
ObjectIntersectionOf(
ObjectMinCardinality(1 :isDissolvedBy :Liquid)
)
)

AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

8.9 Class with Object Property without Range

Receptacle holds | %F10 P_?:_YHUII:I Ers
(Case 03d) 0 ing
” (Case 03d)

Ontology(<http://nomagic.com/ontology/example-case/case-03d>
Declaration(

Semantic Modeling for Information Federation (SMIF) 0.9 259

Class(:Receptacle)

Declaration(
ObjectProperty(:holds)
)

AnnotationAssertion(rdfs:label :Receptacle "Receptacle"@en)
AnnotationAssertion(rdfs:label :holds "holds"@en)
ObjectPropertyDomain(:holds :Receptacle)

8.10Class with Subproperty

Soccer Team congistz of | Soccer Player
(Case 05) 5 11 (Case 05)

| |

Futzal Team composed of | Futzal Player
(Case 05) c (Case 05)

{zubzetz consists of}

ontology(<http://nomagic.com/ontology/example-case/case-05>

260

Declaration(
Class(:FutsalPlayer)

Declaration(
Class(:FutsalTeam)
)

Declaration(
Class(:SoccerPlayer)

Declaration(
Class(:SoccerTeam)
)

Declaration(
ObjectProperty(:composedof)

Declaration(
ObjectProperty(:consistso0f)
)

AnnotationAssertion(rdfs:label :FutsalPlayer "Futsal Player"@en)
SubClassOf(:FutsalPlayer :SoccerPlayer)
AnnotationAssertion(rdfs:label :FutsalTeam "Futsal Team"@en)
SubClassOf(:FutsalTeam :SoccerTeam)
SubClassOf(
:FutsalTeam
ObjectIntersectionOf(
ObjectMaxCardinality(5 :composedOf :FutsalPlayer)
ObjectMinCardinality(5 :composedOf :FutsalPlayer)
)
)
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
SubClassOf(
:SoccerTeam
ObjectIntersectionOf(
ObjectMaxCardinality (11 :consistsOf :SoccerPlayer)
ObjectMinCardinality(5 :consistsOf :SoccerPlayer)
)
)

AnnotationAssertion(rdfs:label :composedOf '"composed of"@en)

Semantic Modeling for Information Federation (SMIF) 0.9

SubObjectProperty0f(:composedOf :consistsOf)
ObjectPropertyDomain(:composedOf :FutsalTeam)
ObjectPropertyRange(:composedOf :FutsalPlayer)
AnnotationAssertion(rdfs:label :consistsOf "consists of"@en)
ObjectPropertybDomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

8.11 Class with Universal Quantification Constraint on Property |

Person has Pet

(Case 06) 0. (Case 06)
Dog Owner has Dog

(Case 06) 1.® (Case 06)

{redefines has}

ontology(<http://nomagic.com/ontology/example-case/case-06>
Declaration(
Class(:Dog)

Declaration(
Class(:DogOwner)
)

Declaration(
Class(:Person)

Declaration(
Class(:Pet)
)

Declaration(
ObjectProperty(:has)
)

AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog :Pet)
AnnotationAssertion(rdfs:label :DogOwner "Dog Owner"@en)
SubClassOf(:DogOwner :Person)
SubClassOf(
:DogOwner
ObjectIntersectionOf(
ObjectMinCardinality(1 :has :Dog)
ObjectAllvaluesFrom(:has :Dog)
)
)
AnnotationAssertion(rdfs:label :Person "Person"@en)
AnnotationAssertion(rdfs:label :Pet "Pet"@en)
AnnotationAssertion(rdfs:label :has "has"@en)
ObjectPropertyDomain(:has :Person)
ObjectPropertyRange(:has :Pet)

8.12Class with Universal Quantification Constraint on Property Il

This example differs from the previous example primarily in that the superclasses “Person” and “Pet” are from a

different package than their subclasses “Dog Lover” and “Dog,” respectively. This is reflected in the OWL ontology by

the import of this namespace.

Semantic Modeling for Information Federation (SMIF) 0.9

The superclasses “Person” and “Pet”, defined in the package “Case 06”, are a different color and a lighter shade than the
classes defined in the package “Case 07”. This is to distinguish them from the classes defined in this package.
MagicDraw’s AutoStyler plugin can automatically set the properties for classes and other UML elements “defined
elsewhere,” that is in a package not containing the defining diagram for the UML element (See section 2.2, Automatic
Styling of Concept Models.).

Person has Pet
(Caze 08 0 (Caze 06
L 0.» (Case 0T)

{redefines has}
ontology(<http://nomagic.com/ontology/example-case/case-07>
Import(<http://nomagic.com/ontology/example-case/case-06>)
Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Person>)

Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)

Declaration(
Class(:Dog)

Declaration(
Class(:DogLover)
)

Declaration(
ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)
)

AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(
:DogLover ObjectIntersectionOf(
ObjectAllvaluesFrom(<http://nomagic.com/ontology/example-case/case-
06#has> :Dog)

8.13Class with Existential Quantification Constraint on Property

Person has Pet
(Case 06 0= (Case 06
Dog Lover Dog
(Case 08) 1 * (Caze 0&)

{zub=zetz has}

ontology(<http://nomagic.com/ontology/example-case/case-08>
Import(<http://nomagic.com/ontology/example-case/case-06>)

262 Semantic Modeling for Information Federation (SMIF) 0.9

Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Person>)

Declaration(
Class(<http://nomagic.com/ontology/example-case/case-06#Pet>)
)

Declaration(
Class(:Dog)

Declaration(
Class(:DogLover)
)

Declaration(
ObjectProperty(<http://nomagic.com/ontology/example-case/case-06#has>)
)

AnnotationAssertion(rdfs:label :Dog "Dog"@en)
SubClassOf(:Dog <http://nomagic.com/ontology/example-case/case-06#Pet>)
AnnotationAssertion(rdfs:label :DogLover "Dog Lover'"@en)
SubClassOf(:DogLover <http://nomagic.com/ontology/example-case/case-06#Person>)
SubClassOf(
:DogLover
ObjectIntersectionOf(
ObjectMinCardinality(1 <http://nomagic.com/ontology/example-
case/case-06#has> :Dog)
ObjectSomevValuesFrom(<http://nomagic.com/ontology/example-case/case-
06#has> :Dog)

)
)
)
8.14<<Anything>> with Self-Referential Subproperty
Thing

-hdds

-oontains

{subsets holds}

ontology(<http://nomagic.com/ontology/example-case/case-11>
Declaration(
ObjectProperty(:contains)
)

Declaration(
ObjectProperty(:holds)
)

AnnotationAssertion(rdfs:label :contains "contains"@en)

SubObjectProperty0f(:contains :holds)
AnnotationAssertion(rdfs:label :holds "holds"@en)

Semantic Modeling for Information Federation (SMIF) 0.9 263

8.15<<Anything>> Holder with Subproperty

R R At is dissolved by [|iquid
g 1. | (Case 18)
(Case 18) ;

is corroded by Acid

1.% (Case 18)
{zub=setz iz dizzolved by}

ontology(<http://nomagic.com/ontology/example-case/case-18>
Declaration(
Class(:Acid)
)

Declaration(
Class(:Liquid)

Declaration(
ObjectProperty(:isCorrodedBy)
)

Declaration(
ObjectProperty(:isDissolvedBy)
)

AnnotationAssertion(rdfs:label :Acid "Acid"@en)
SubClassOf(:Acid :Liquid)
AnnotationAssertion(rdfs:label :Liquid "Liquid"@en)
SubClassOf(

owl:Thing

ObjectIntersectionOf(

ObjectMinCardinality(1 :isCorrodedBy :Acid)
)

)
SubClassOf(
owl:Thing
ObjectIntersectionOf(
ObjectMinCardinality(1 :isDissolvedBy :Liquid)
)
)

AnnotationAssertion(rdfs:label :isCorrodedBy "is corroded by"@en)
SubObjectProperty0f(:isCorrodedBy :isDissolvedBy)
ObjectPropertyRange(:isCorrodedBy :Acid)
AnnotationAssertion(rdfs:label :isDissolvedBy "is dissolved by"@en)
ObjectPropertyRange(:isDissolvedBy :Liquid)

8.16 Class with Subproperty without a Range

Game = played between | propertyHolders
(Case 16) 2.7 Thing
- (Case 16)

iz a competition between
2

{zubsets iz played between}

Soccer Match
(Case 16)

ontology(<http://nomagic.com/ontology/example-case/case-16>
Declaration(

264 Semantic Modeling for Information Federation (SMIF) 0.9

Class(:Game)

Declaration(
Class(:SoccerMatch)
)

Declaration(

ObjectProperty(:isACompetitionBetween)

Declaration(

ObjectProperty(:isPlayedBetween)

)

AnnotationAssertion(rdfs:label :Game "Game'"@en)

SubClassOf(
:Game
ObjectIntersectionOf(

)

ObjectMinCardinality(2 :isPlayedBetween)

)

AnnotationAssertion(rdfs:label :SoccerMatch "Soccer Match"@en)

SubClassOf(:SoccerMatch :Game)
SubClassOf(
:SoccerMatch
ObjectIntersectionOf(

ObjectMaxCardinality(2 :isACompetitionBetween) ObjectMinCardinality(2
:isACompetitionBetween)

)

AnnotationAssertion(rdfs:label :isACompetitionBetween "is a competition

between"@en)

SubObjectProperty0f(:isACompetitionBetween :isPlayedBetween)
ObjectPropertybDomain(:isACompetitionBetween :SoccerMatch)
AnnotationAssertion(rdfs:label :isPlayedBetween "is played between"@en)

ObjectPropertybDomain(:isPlayedBetween :Game)

8.17 Class with Necessary and Sufficient Property

has contract with |0..*

Manufacturer

(Case 20}
i

Steering Wheel Manufacturer

(Caze 20) 1. %
{sufficient}
{subsets has contract with}

ontology(<http://nomagic.com/ontology/example-case/case-20>

Declaration(
Class(:CarManufacturer)

Declaration(
Class(:Manufacturer)
)

Declaration(

Car Manufacturer
(Caze 20}

Semantic Modeling for Information Federation (SMIF) 0.9

1 __*
{sufficient}

{subsets has contract with}

Windshield Manufacturer
(Caze 20)

265

Class(:SteeringWheelManufacturer)

Declaration(
Class(:WindshieldManufacturer)
)
Declaration(
ObjectProperty(:hasContractwith)
)
AnnotationAssertion(rdfs:label :CarManufacturer "Car Manufacturer'"@en)
EquivalentClasses(
:CarManufacturer
ObjectIntersectionOf(
ObjectMinCardinality(1 :hasContractWith :SteeringWheelManufacturer)
ObjectSomeValuesFrom(:hasContractWith :SteeringWheelManufacturer)
)
)
EquivalentClasses(
:CarManufacturer

ObjectIntersectionOf(
ObjectMinCardinality(1 :hasContractWith :WindshieldManufacturer)
ObjectSomeValuesFrom(:hasContractwWith :WindshieldManufacturer)

)

SubClassOf(:CarManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :Manufacturer "Manufacturer"@en)
AnnotationAssertion(rdfs:label :SteeringWheelManufacturer "Steering Wheel
Manufacturer"@en)

SubClassOf(:SteeringWheelManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :WindshieldManufacturer "windshield
Manufacturer"@en)

SubClassOf(:WindshieldManufacturer :Manufacturer)
AnnotationAssertion(rdfs:label :hasContractWith "has contract with"@en)
ObjectPropertyDomain(:hasContractWith :Manufacturer)
ObjectPropertyRange(:hasContractWith :Manufacturer)

8.18 Class With Property Having Unspecified Multiplicity
UML allows the cardinality of a property to be left unspecified. The concept modeling profile interprets unspecified
cardinalities as being zero to many (“0..*”).

Soccer Team consizts of | Soccer Player
(Case 21) (Case 21)

ontology(<http://nomagic.com/ontology/example-case/case-21>
Declaration(
Class(:SoccerPlayer)
)

Declaration(
Class(:SoccerTeam)

Declaration(ObjectProperty(:consistsOf))
AnnotationAssertion(rdfs:label :SoccerPlayer "Soccer Player"@en)
AnnotationAssertion(rdfs:label :SoccerTeam "Soccer Team"@en)
AnnotationAssertion(rdfs:label :consistsOf '"consists of"@en)
ObjectPropertybomain(:consistsOf :SoccerTeam)
ObjectPropertyRange(:consistsOf :SoccerPlayer)

266 Semantic Modeling for Information Federation (SMIF) 0.9

Alphabetical Index

ADOUL. ettt e
... 118, 139
ADOUL LYPC.cnetieiieeiieiieeieeite et e e ere e reeaeeseaeeeaeee e eenes
... 139
Abstract Mapping Rule...........ccoceeiiiiiiniiiiiieeeeee
... 108
Actual ENtity....cocovvvieriiiieieeiee e
... 162
Actual STUAtION.c..evviiiiiieeiee e
... 158
Al i
... 128
Annotation Property........cccoceeeereevenienienieneeieesiee e
... 131
ASSCIT. ettt
... 128
ASSEITEA DY.cuveiieiieieii e
... 110
ASSEILEA LYPC..ererririreiieieieeierieete e ere et ete e e sree e enes
.. 110p.
ASSCITION. c.. ettt e
... 162
ASSErtion StatemMent..........eceveeeveerieerreeiierieeeeeseeereenenns
... 115
Assertion Strength..........cccoecevveeierienieiieeeeee e,
... 114
ASSCTES. .uveutententeneeneentententete et ebe st e ete et be st et e teste bt e eneeeneeens
.. 163p.
aSSEItS PAtLEIN......uuuuiiiiiiiiiiiiiii e
... 126, 175
ASSOCIALION. ...ttt
... 74
ASSOCIAtION TYPC..vecvvirieeriiieiretiereeteete et ete e seveeeree e
... 74
AL ONCE..ceeeiiiiiiiiee et ettt e e e e e et e et e e een e eeenas
... 152
Base Unit TYPE.....c.eeververierierierieeiesieeienie e evee e
... 179
DINAS. ..t
... 132,135
BOUNA DY
... 132, 135
DOUNA It
... 132
Bound Individual.........ccocooiiiiiiiieeee
... 132
Bound Property........cccoeceieeieiieneieeeeee e
... 132
Bound Subject......ccoiiieiiiieieieeeeeeee e
... 132

Semantic Modeling for Information Federation (SMIF) 0.9

DOUNA 0.ttt e
... 132, 136
CALlS. et
... 80
CALCGOTIZES .o nveveeueeeeieeieneenteeeeseeeeesee e e s eeeneesbeeneesseeaneeeas
.. 174p.
Characteristic Binding...........cccocveeverievienierienieieseennenn
... 133
Characteristic TYPe......cuevvieieriieierrieierie et
... 133
CORTCReuvreventetetententeeeseensenteneesteseeseaseeseesesseenseenseenseenseans
... 112
COMPULALION. ... eeevvreerereeereieeeesteeteeeeenbeeeeeseeeseeseeseeennneens
... 121
COMPULEd.......eiiieeieiieiieieeiee ettt e ees
... 121
Computed Facade........ccccoovevieiinieieieeeeeeeeee
... 109
CONCEPL TUIC.....cuvieieiiiieieciteie ettt
... 114
Conceptual Package.........cccoeeeeviieieniieienieeeree e
... 101
CONCIELE ENA....uviieiieiieeiieeiieeiie ettt eree e e eaee e e
... 109, 112
CONCTELE TOCUS.....vieuriiieiieeieie ettt
.. 109p.
Concrete Map End.........ccooveveiiiieniiiienecieeceeeeeeenn
... 109
CONCIELE MAPPING....vvrrreeierireererarestereereessesseeseeseenseesseans
... 109
Concrete Pattern Body........ccoocveeieriecienieiieeieeeieeie
... 109
CONAITION.veeurieeieie ettt ettt eseereenee s
... 147
Conditional..........cceeeriieiiierie et
... 147
Conditional Rule...........cceeviiiniiieiiieie e
... 148
Constant Reference..........cccoevveveenciiinieeniiee e,
... 76
Constant Value..........ccceverieiierieeiiesieee e
... 77
CONSLrAINEd DY....oevieeieiiiieieciee e
... 155, 167
CONSLIAINS. ...vvevreerieeeesreeeeeaeeeresteeesesteessesseessesseessesseessesseens
... 153, 155, 157
(0101110 USSR
... 163
CONEEXLUALIZES. ..vvrevrenrieiieieeeenie et eee e e e eeeeseeenneens
.. 78, 164p
267

... 148
default.......oooiie e
... 114
Default....cc.eoiriiriineniiereeeee e
... 128
defiNed DY....cveeiiiieiicicccece e
... 117, 167
defined iN.....ooeeieiiieeeeee e
... 102, 170
defined within SYSteML...........cceocveriiviierieeieieeieieeieeens
... 180, 182
EfINES. ..o
... 102p., 116p.
Definition.cooereieiieieieeeeee e
... 102, 116
Definition Relationship...........cccoevevieeveniiceniieeieeienns
... 117
DISJOINL.....veeivieeieiieieeie ettt ere e e ane e
... 148
ENtity TYPe..veeeeeeiee et
... 173
Enumerated.........c.cocoviririnininineeeeeee e
... 149
EQUAlity.....coveiieeieieeiecieceeeeete et
... 77
Equality Constraint..........ccceeeeereereeneeneneeee e
... 77
Equivalent..........cccoecveieeinieiciesc e
... 149
evaluated DY.......ccvevieiieieii e
.. 79p.
EVALUALES. ...ttt
.. 78p.
EVALUALES TM..veuveeiieieieieieeceeeee e
.. 78p.
Evaluation........ccooeieieiiiiie e
... 78
EXACLY ONC....ooeieiieiieieee e
... 128
CXPLICTE e ventieeieiieeieeie ettt
... 124
EXPression CONnteXt.........ceevvereevuereerueieerreesreeenneeesveennns
... 78
Expression Evaluation............coccoooeeiiiienenienincceeee
... 79
Expression NOde.........ccevveriiiieneiieseeieseeseee e
... 79
CXPIESSION tEX L. ueeuvireririeeieiriertesrieteereeeesreeaesteeaeseeeseenes
... 79
expression text language.........cooveeeeeeierieiieeiieeeie e
... 79
Expression Variable...........cccooveeieriiecieniecienieieseeie s
... 121
EXEENAS SCOPEC..uviviirieeieirieeteeteete et et eee st eeereesereeeeaeees
268

... 102, 105
Extent of ConteXt..........coovviiieiiiiieiie e
... 165
Extent of TYPe.....coevvererineieicicicieeeeeeeesec e
... 174
external reference.........cccoevveeveiiiecceiceceeee e
... 116
eXterNal teIM.......cceiiiiiieieiee e
... 116
Facade.........ooooveeeeeiieeee e
... 109
Facet. oo
... 84
Facet Classification Constraint.............cccccceveeeeeueeeeneennnn.
... 150
Facet of Entity......cccoeveeiivininininiiincncncnce e
... 85
Focus Variable...........cc.oovvieiiiiiiiiiceccececce e
... 121
Function Call.............ccoooiiiiii e,
... 80
Function Called............cooeeeeeieiieeeeeeeee e
... 80
Function Implementation............c.cceceveeriiereneeesieeeninens
... 80
Function TYPe.....cooueieeiiiieieieeeeeee e
... 81
GeneraliZation............cccveeeevieeeieeeeeeee e eeenns
... 150
Generalization CONStraint...........c..coceeevvreereeevveenreeeneennen.
... 150
Global .o
... 114
has authoritative SOUICE...........coevveeeeuveeeereeeereeeeieeeeeeennns
... 119, 167
has DINAING........ccceveieriiiieriiiiee e
... 132, 167
has COVEIING.......ovuiriiiiiieiieeeee e
... 148, 175
has ENtItY.....coevieieieicieie e
... 85
has equal.......c.cccveriieieiee e
.. T7p.
has equality.......cccoooeriiiiii e
... 78
has faCEt........coeeeieieeee e
... 85
has general.........ccovviieriiiieiieieiee e
.. 150p.
has generalization............coceeveieenenienineeeeeeee e
... 156, 176
has Map rule......c.ccoeverininiiiiicc e
... 111, 121
has metadata............cceeeeeiiiiiieeeii e
... 118, 167

Semantic Modeling for Information Federation (SMIF) 0.9

... 153,176
has NAMC......cccvieiieiicie e
... 90, 167
has OWNING PAtLEIN........ccververrieieiieieieereee e eee e
... 125
has preferred.........ccoovvevieiiiieiicieeeee e
... 91, 167
has PrefiX... .o
... 104
A PLrOPEILY....ccvveeieiieieiieie et
... 135,175
has 1€COTd......coueieiiiieiieiiee e
... 118, 167
has specialization............cceoeriererieiieie e
... 150, 175
has SPECIfIC....cueiieieiieierii e
... 151, 156
DAS SUDSEL....c.eineeiieiieieieie e
... 125,127
has SUPEILYPE....ccoveieieeieiieie ettt
... 175
RAS EYPC..venvieiieiieieeteeeeet e
... 170, 174
RAS UNIQUE.....eeeviriceiieticicceee et
... 157
has uniqueness CONStraint..........ccoeeveveeeeneeieneeeneeeneennn
... 157
has ValUe.....cc.ooveienieieiciicec e
... 77
hasValUe.......ccuevieiiieieie e
... 180, 183
holds Within.........cceeeiiiiiecieeeee e
... 163, 169
Identifiable ENtity........ccoocveieriieieiieienieeiese e
... 165
Identification.coveieieieiece e
... 88
1dentified DY......ocverieieieeee e
... 88, 167
TAeNtIfIET. ..
... 88
Identifier in NameSPACE.......ccvevvveveereerrierieeireeeveeereeenns
... 88
TAENEITIES. ..
... 88
implemented DY.......ccocveverieiiinieieeieeeeee e
.. 80p.
IMPICMENLS......vivieeieiieiecieeieeteet ettt re e e e saeeeeereeenns
... 80
1N CONLEXE OF ..ot
... 165,170
INCIUAE.....ouiiieiiiei e
... 102
Information SOUICE.cceeiruiririririireee e

Semantic Modeling for Information Federation (SMIF) 0.9

... 117
Intersection TYPe......cccvieieririeniiieeeereeseeee e
... 174
IIIVETSC. c.enveeueeeieneeseeeneeseeeeesseensesseensesseensesseesnseesnseeensneenns
... 82
IRT IAentifier......coeviriniiiiiieresieeeeeeeeeee
... 89

1S boUNAArY Part.....cceeiiiiiiiieeie e
... 122

1S COVEIEA DY.c.veviiiiiiiiiinierientcteeecteee st
... 148

1S OF LY P ettt
.. 137, 154p

1S Primary identify........coooeveereiieneiieeeee e
... 157

1S SUFFICENL. ...
... 152

IS USCA DY.vviniieiieiieiecieee et
.. 80p.
Lexical Reference..........cccceoevieiinieninieniicencceeeee
... 102
Lexical SCOPE.....c.couerieieiiieieireeereeeresceese e
... 103
L1OCAL ..
... 114
Logical Package.........ccccoooeeiinieiinieieececeeeee
... 103
made StAteMENT.........cceviereieierieieeeee e
.. 117p.
MAP All.viieiiiieii e
... 113
Map 1ule Of...c..ooiiiii e
... 112, 121
Map Rule Type ASSErtion.......c.ccceecerverererenenicneeneennen.
... 110
Mapped variable..........ccooveeierieriinieeeiee e
... 110
MAPPING. ..ttt et e
... 110
Mapping Package..........cceeveveririrninininininenenec e
... 103
TAPS L0ttt sttt ettt ere e sae e
... 110, 125
Maps variable........coccooiiiiiiiiinieeee e
.. 110p.
Match End......cooooiiiiiiiieieeeeeeeee e
... 111
MAtCh frOML...c.eeieiiieici e
... 109
Match Rule.......coooiiiiiiiiii e
... 111
Match RUleS......cccveiiiiiiieieeiceeeee e
... 121
MALCH L.ttt
... 112
269

... 126, 159
MALCNES. .. eeeiieciieeiece et
... 123, 126
MAXIMUM NUMDET.....c.eoviiiiiiiiierieeierteneeeteetenie et
... 152
Metadata........coeeviiieriiieee e
... 117
metadata abOUL.........c.cecveeciieriieiecie e
... 118
Metadata relationship..........ccocereecieneecienieiesieee e
... 118
MININUM NUMDET ...t
... 152
MOAEL...oiieiieiieeeeeeece e e
... 103
Multiplicity CONStraint.........cceeeveereeceenierieniereesrereenneenns
... 151
MUIIPICItY OF...covviiiiiiicieceeeee e
.. 152p.
Multiplicity Reference...........ccccvvvevirienineneeeeeee,
... 153
Multiplicity Target.......cecveveriieieniieienieeiene e
... 153
NAME....conviiiiiii e
... 89
NAITICS.evveveeneeeieseeneeseeseeseeseetessessessensesensensensenseneesseneeneas
.. 89p.
NAMESPACE....eeeuveeeieriiieriieeieenieeeieeite st eireeessbieeesnieeeas
... 89
NAMINE....ovivieiicieeie et ereere e e sereeeaneas
... 90
INEGALE...coneieiiieiieeeeee e
... 128
negated Within...........ocoeveriirieiiiene e
.. 168p.
NEZALES ... evetiteteeteetentestestebeste e e et et et ebeeseebeebeebesbeenneas
... 164, 168
INEZAION. ...ttt e
... 167
Object Operation TYPe......ceecvevveeierieriienieiereesvee s
... 81
OFESEL. et
... 182
OO TaEL.ceeeeeeieeieeieete ettt
... 81
OPHONAL....eieeiiiieieiieieee et
... 128
Owned Property Binding...........cccccoevvevveviiniecienieieeenns
... 134
Owned Property TYPe......cceoeveereriereeeeeeeeeee e
... 134
OWNS VaTiable........coeviririniniirieeeee e
... 122,125
Package......c.eeeueeiiiiiieiecee e
270

... 104
Part Variable........ccoooiiiiiiiiieieeeeeeee e
... 121
Pattern...c..coieiiiiiiieee e
... 122
Pattern Bindings...........ccoceevveviinieniinieieeienie e
... 122
Pattern Match.........ccoooiiiiiiniiiee e
... 123
Pattern Matches..........ccevvvieninieeeeeeeeeee e
... 123
Pattern of TYPeC...ccvvveriiiieeceeieceeeeee e
... 124
Pattern Variable..........cccoooeiiiiiiiiieeeeeee
... 124
Pattern Variables..........coceoeeierieienieeeee e
... 125
Phase. ...cc.eeuieiiiee e
... 85
Physical Package.........cccceouerieieniiiiiiieeeeee
... 104
Prefered Identification............cceevevierieneneenieeeeeeenn
... 90
preferred for........vvviiiiiiiceceee e,
... 91
PrefiX. e
.. 104p.
PIEfiX Of ..o
... 105
PIETEQUISILE LYPC..vevrerrierierierieiieeienteetesreeeeseeeneeeereeenenas
... 154
PIOPErties Of tYPe......evveeiirieiinieieeee e
... 154,176
Properties Relationship..........coccevevererenenieneeneeneenieens
... 134
Property Binding...........ccecevieienierienieieceece e
... 135
Property Constraint...........cecueveevieneenenieneenieeeieeeieene
... 153
PIOPEILY OF .ottt
... 135, 137
Property OWNET........coviiiiiinieeiieeieeiee et
... 136
Property OwWner TYPe......cccovvevirieniiieneeie e
... 136
Property Transitivity Constraint...........cccceccevevververnennneen
... 154
Property TYPe...coveeeeiiiiiiieeeeeeeet et
... 136, 154
Property Type Constraint..........ccoceeeeeneeneeenueenneeenieens
... 154
PropOSItION......couevuiriiriirieriiricectccctceete e
... 168
Proposition Variable............ccoeveeeeniecienieieneeiesee e
... 125

Semantic Modeling for Information Federation (SMIF) 0.9

... 124
Qualified Proposition...........ccccceeeeeierienenienie e
... 125
qualified Within..........cccccveeierieiiicec e
... 126, 169
QUALTTICS. ..ottt e
.. 125p.
Quantity Kind..........ccooirieiiiieiieeeeeeeeee e
... 180
TALIO ettt ettt sttt s e es
... 182
TECCIVEA DY.ouviiiiciiiiiciccecee et
... 81
TECCIVET c.euteeeetieieeeeeeteetee et enee et etesee e e s eeeneesseeneesseeeenneas
... 81
RECOTA.. .ottt
... 139
Record of an Entity.........cccccovveeiiiieviiiieiie e
... 118
Record TYPe...c.eeeeeeeeeeieeeeee e
... 139
TECOTAING LYPES...vievrenrieeierreeeereeeeerieeeesieesesieeseensseesnneens
... 139, 176
TEACTINES. .o
... 151
reference end.........cooveiiiieiiniee e
... 112
reference fOCUS.cooviriririneieecceee e
.. I11p.
Reference Map End..........ccoovivieiiiieniicieiecieieeeeees
... 112
reference MapPing........cccecvereeeereeriereeeeseeree e seee s
... 113
Reference Pattern Body.........cccoovevievieiiiieiicieieeee
... 112
referenced DY......ccoovvivvieiiiieeeee e
... 77, 105
Referenced SCOPE.......couveieruieiiinieieiiee e
... 102, 105
Referenced System of Units.........ccoccveveevieniinceenieeniennns
... 180
TEIRTENCES. .. ettt
... 103, 105
Relationship.......cceeveeieniieiieieeeee e
... 141
Relationship TYPe......ccvveveriieienieiesieieeeee e
... 141
Representation............cceeveeeevieeeenieeeesieeeesreereereene v ens
... 113
Representation Rule..........coccoiiiiiiiniiiiiieceeee
... 113
rePreSeNted DY....c.evvevierieieiieiecieeee e
... 113
Represented Concept.........cooereueierienieieenieeeeeesenieans

Semantic Modeling for Information Federation (SMIF) 0.9

... 113
1EPIeSeNnted tYPE.....coverueeruerieieeiiee et
.. 113p.
TEPIESENLS TUIC. ...cveteeiiiieieectctceccecee e
... 113
TESPECE OF ittt e
... 153
ReSULt tYPe..ceeieieiieiieie e
... 82
TESUIEEd 1N
... 116
TESUIEING tYPC..uvieiirieieciieieeteete ettt
... 79, 82
TETUINEd DY.coniiiieiiiiiiieeeeee e
... 82
ROIC. ..
... 86
RUIC.....oiiiiieeee e
... 155
Rule Constrains..........cooeevereerenienenieieeie e
... 155
Rule SubSumption.........ccccecevverirenenenenenieiieieereeieens
... 156
SALISTIEA DY..uvevieiiiiciecece e
... 122,124
SALISTICS. ..o
... 123
Scalar QUANTILY........coevververieieieieenereneeese e
... 180
Scope of Reference..........occevvveeeerieiienieiiieeieeeiee e
... 105
Scope Reference..........coeeverieienieiiniieneeecceeeee
... 105
SCOPES 1AENLITICT. ...c.eeviriiriieieierccceeee e
.. 89p.
SEIECE. ...ttt
... 127
STHUALION.eeeeeieceieeeeee e
... 159
Situation Matches...........cccvvveverieneiiee e
... 126
SItUAtION TYPC..vicveerieeieriieierieeiesieete et eeeeesereesrae e
... 160
Source of Information............ccoeeeverieiencceiniienieeene
... 118
SpPecialiZation........cc.evveveieieieineneeene e
... 156
StALEd DY.eevieiiiiieiieiceeeee e
... 106, 171
SEALEIMENL. ..ottt
... 105, 119
statement date and time...........cccoeevereeieniecenee e
... 119
SEALES. .+ vevetertertetertetent et et et ettt et eb ettt b et e st
... 103, 106
271

... 108
Structured Value.........ccoeevieeiiiciieieciicieee e
... 181
Structured Value TYpe......cccoveeveviecienieiecieie e
... 181
Subject of Pattern Relationship...........ccoeeeevveviereeeneenns
... 126
Subject of Record Type.......oeceeueerieienieereeeeee e
... 139
SUDJECE LYPCuvenreeienieeeieiieeteieeteeteereeeesaesaesaeseeesseensenseens
... 124, 126
Subset Variable..........ccooveviiiiniiiniienieeneeeeeee e
... 126
SUDSELS. ..cuvteeiieeiieireeetee et esteeereeteeeaeebeesbeeeaeeeeeanbeeaeanes
.. 126p.
SUDSUMEA DY ..ot
.. 155p.
SUDSUITIES. ...ttt e
.. 155p.
SUMMAry deSCription........ceverueeiereeieneeee e
... 116
SYMDOL....eiiiiieiiciee et
... 182
System of UnNitS.......cceevveviiereiiieieiieieceeieeee e
... 181
Technical Identifier..........ccvevveevieiiieiieciiie e,
... 91
Temporal Entity........ccceeeviereiieieiieeeieieeieie e
... 169
TOIML ettt
... 91
text defINItioN....c.ceeiiiiieie e
... 116
Text Identifier........ccovieriiiiee e
... 91
There EXIStS.....ccvvevuiiieiiiieieiieiecieereeeesre e sre e sseenne e
... 128
TRING et
... 169
traANSACION 1. ...vieveeieieciieie et e
... 119
Traversal......c.cooeviiieiiiii e
... 82
Traverse Through...........ccoooeiiiiiiiiiieeeeee e
... 83
traverse t0 relation..........ccveeveeiecienienieeieie e
... 82
trAVErSEd DY.ccuviiiiiiciieieceeecee e
272

... 83
traverses through............coooiiiii
.. 82p.
TYPC. e
... 175
Type CONSIIAINL....ccveeveriieiieeiereeierie e sreeteereeeereesenee e
... 156
Type Pattern Variable............cooccoviiiiiiniiiineieeeee
... 127
typographical conventions............coceeveveervevienueneeeennnne XVvi
UNION TYPC..nviiiiiieieiieie et
... 176
Unique Identifier..........ooevieviieieciicieieceee e
... 92
UNIQUE SCL..neiiieiiiiieieeieeee e
... 157
Unique Text Identifier..........cccoevevenienincieneeiieeie e
... 92
UNIQUE WIthIN....oiiiiiiiicii e
... 89, 92
Uniqueness CONStraint.........ocoeeeeveeeriereereeseeneseeseeeeeeneen
... 157
UNIt OF SYSEEML.....veiieiieiieiieiectei e
.. 180p.
UNIE TEFETENCE. . .eveevieeieiieiieiceie ettt
... 182
UNIE TYPC.cniiiieieeiieieeiete ettt
... 181
Unit ValUe....c.oviiiiiriiiiiieieeceeeeeteeeeee e
... 183
VAIUC. ...t
... 91
VAlUC. ...t
... 183
Value TYPC...eoveeveeiieieeieieeieie et
... 184
Variable Binding...........cccceeevveviieienieieneeieseeee e
... 127
Variable Qualification...........ccceecvvevieecieenciieee e,
... 127
Variable SUDSELS........cccecvveririnerinineneseeenee e
... 127
(S 653 0] USSR SU SRR PP
... 119
WS STALEd IN...eveeeiiiieiiiiee e
... 116, 167
WIth TESPECE 10...euviieieiiiieie et
.. 152p.

Semantic Modeling for Information Federation (SMIF) 0.9

	Submission-specific material
	0 Submission Specific Material
	0.1 Submission Introduction
	0.2 Submission Team
	0.2.1 Submitters
	0.2.2 Contributors & Supporters

	0.3 Proof of concept
	0.3.1 Resolution of Mandatory requirements
	0.3.2 Non-mandatory features

	0.4 Resolution of Discussion Issues

	1 Scope
	1.1 Business Need
	1.1 Scope
	1.1.1 Semantic federation and integration
	1.1.2 Expressing conceptual reference models
	1.1.3 Pivoting through conceptual reference models
	1.1.4 Mapping to information and data models

	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 SMIF Model Semantics
	5.1 The SMIF Conceptual Model Foundation
	5.1.1 Thing
	5.1.2 Type
	5.1.3 Identifiable Entities and Values

	5.2 Identifiers
	5.2.1 Basic Identifiers
	5.2.2 Unique and Preferred Identifiers

	5.3 Temporal and Actual Entities
	5.4 Situations (Upper Level)
	5.5 Kinds of Types (Metatypes)
	5.5.1 SMIF Language Metatypes
	5.5.2 Full Meta-Type Hierarchy
	5.5.3 Domain Specific Metatypes

	5.6 Context and Propositions
	5.7 Properties, Characteristics and Relationships
	5.7.1 Property Abstraction
	5.7.2 Characteristics
	5.7.3 Property Owner Abstraction
	5.7.4 Associations and Relationships
	5.7.5 Relationships

	5.8 Composition and Sequencing of Actual Situations
	5.9 Patterns
	5.9.1 Patterns – top level
	5.9.2 Repeated Patterns
	5.9.3 Pattern Variables and Bindings
	5.9.4 Example pattern definition in UML Profile
	5.9.5 Example pattern definition in SMIF model
	5.9.6 Pattern Matching
	5.9.7 Pattern Matching Example
	5.9.8 Computed Variables
	5.9.9 Subset Variable Example
	5.9.10 Controlling Person Pattern in the SMIF Model

	5.10 Mapping
	5.10.1 Mapping Components Example
	5.10.2 STIX Concrete Data Model
	5.10.3 OTR Conceptual Reference Model
	5.10.4 STIX / OTR Mapping Rule

	6 SMIF Conceptual Model Reference (Normative)
	6.1 Diagram: SMIF Packages

	7 SMIF Conceptual Model::Associations
	7.1 Diagram: Associations
	7.2 Class Association
	7.3 Class Association Type

	8 SMIF Conceptual Model::Expressions
	8.1 Diagram: Expressions
	8.2 Class Constant Reference
	8.3 Association Constant Value
	8.4 Class Equality
	8.5 Association Equality Constraint
	8.6 Class Evaluation
	8.7 Association Expression Context
	8.8 Class Expression Context
	8.9 Association Expression Evaluation
	8.10 Class Expression Node
	8.11 Class Function Call
	8.12 Association Function Called
	8.13 Association Function Implementation
	8.14 Class Function Type
	8.15 Class Object Operation Type
	8.16 Association OO Target
	8.17 Association Result type
	8.18 Class Traversal
	8.19 Association Traverse Through

	9 SMIF Conceptual Model::Facets
	9.1 Diagram: Facets
	9.2 Class Category
	9.3 Class Facet
	9.4 Class Facet of Entity <<Relationship>>
	9.5 Class Phase
	9.6 Class Role

	10 SMIF Conceptual Model::Identifiers
	10.1 Diagram: Identifiers
	10.2 Association Identification
	10.3 Class Identifier <<Value>>
	10.4 Association Identifier in Namespace
	10.5 Class IRI Identifier <<Value>>
	10.6 Class Name <<Value>>
	10.7 Class Namespace
	10.8 Association Naming
	10.9 Association Prefered Identification
	10.10 Class Technical Identifier <<Value>>
	10.11 Class Term <<Value>><<Intersection>>
	10.12 Class Text Identifier <<Value>>
	10.13 Class Unique Identifier <<Value>>
	10.14 Class Unique Text Identifier <<Value>><<Intersection>>

	11 SMIF Conceptual Model::Kernel
	11.1 Diagram: Kernel Associations
	11.2 Diagram: Kernel Identifiers
	11.3 Diagram: Kernel Lexical Scope
	11.4 Diagram: Kernel Metadata
	11.5 Diagram: Kernel Properties
	11.6 Diagram: Kernel Rules Summary
	11.7 Diagram: Kernel Top Level
	11.8 Diagram: Kernel Types
	11.9 Diagram: Kernel Values

	12 SMIF Conceptual Model::Lexical Scope
	12.1 Diagram: Lexical Scope
	12.2 Class Conceptual Package
	12.3 Association Definition
	12.4 Class Include
	12.5 Class Lexical Reference
	12.6 Class Lexical Scope
	12.7 Class Logical Package
	12.8 Class Mapping Package
	12.9 Class Model
	12.10 Class Package
	12.11 Class Physical Package
	12.12 Association Prefix
	12.13 Class Prefix <<Value>>
	12.14 Association Scope of Reference
	12.15 Association Scope Reference
	12.16 Association Statement

	13 SMIF Conceptual Model::Mapping
	13.1 Diagram: Facades
	13.2 Diagram: Mapping Rules
	13.3 Class Computed Facade
	13.4 Association Concrete Map End
	13.5 Association Concrete Pattern Body
	13.6 Class Facade
	13.7 Association Map Rule Type Assertion
	13.8 Association Mapped variable
	13.9 Class Mapping
	13.10 Class Match End
	13.11 Class Match Rule
	13.12 Association Reference Map End
	13.13 Association Reference Pattern Body
	13.14 Association Representation
	13.15 Class Representation Rule
	13.16 Association Represented Concept
	13.16.1 Enumeration Assertion Strength

	14 SMIF Conceptual Model::Metadata
	14.1 Diagram: Metadata
	14.2 Association Assertion Statement
	14.3 Class Definition
	14.4 Association Definition Relationship
	14.5 Class Information Source <<Role>>
	14.6 Class Metadata
	14.7 Association Metadata relationship
	14.8 Association Record of an Entity
	14.9 Association Source of Information
	14.10 Class Statement

	15 SMIF Conceptual Model::Patterns
	15.1 Diagram: Patterns
	15.2 Class Computed
	15.3 Association Exclusion
	15.4 Class Expression Variable
	15.5 Class Focus Variable
	15.6 Association Match Rules
	15.7 Class Part Variable
	15.8 Class Pattern <<Intersection>>
	15.9 Association Pattern Bindings
	15.10 Class Pattern Match
	15.11 Association Pattern Matches
	15.12 Class Pattern of Type
	15.13 Class Pattern Variable
	15.14 Association Pattern Variables
	15.15 Class Proposition Variable
	15.16 Association Qualified Proposition
	15.17 Association Situation Matches
	15.18 Association Subject of Pattern Relationship
	15.19 Association Subsetting
	15.20 Class Type Pattern Variable
	15.21 Class Variable Binding
	15.21.1 Enumeration Variable Qualification

	16 SMIF Conceptual Model::Properties
	16.1 Diagram: Characteristics
	16.2 Diagram: Properties
	16.3 Class Annotation Property
	16.4 Association Bound Individual
	16.5 Association Bound Property
	16.6 Association Bound Subject
	16.7 Class Characteristic Binding
	16.8 Class Characteristic Type
	16.9 Class Owned Property Binding
	16.10 Class Owned Property Type
	16.11 Association Properties Relationship
	16.12 Class Property Binding
	16.13 Class Property Owner
	16.14 Class Property Owner Type
	16.15 Class Property Type

	17 SMIF Conceptual Model::Records
	17.1 Diagram: Records
	17.2 Class Record
	17.3 Class Record Type
	17.4 Association Subject of Record Type

	18 SMIF Conceptual Model::Relationships
	18.1 Diagram: Relationships
	18.2 Class Relationship
	18.3 Class Relationship Type

	19 SMIF Conceptual Model::Rules
	19.1 Diagram: General Rules
	19.2 Diagram: Property Constraints
	19.3 Diagram: Rules in Context
	19.4 Diagram: Rules Summary
	19.5 Diagram: Type Constraints
	19.6 Class Conditional
	19.7 Class Conditional Rule
	19.8 Class Covering Constraint
	19.9 Association Covering Constraint
	19.10 Class Disjoint
	19.11 Class Enumerated
	19.12 Class Equivalent
	19.13 Class Facet Classification Constraint
	19.14 Association Generalization
	19.15 Class Generalization Constraint
	19.16 Class Multiplicity Constraint
	19.17 Association Multiplicity Reference
	19.18 Association Multiplicity Target
	19.19 Class Property Constraint
	19.20 Class Property Transitivity Constraint
	19.21 Association Property Type
	19.22 Class Property Type Constraint
	19.23 Class Rule
	19.24 Association Rule Constrains
	19.25 Association Rule Subsumption
	19.26 Association Specialization
	19.27 Class Type Constraint
	19.28 Association Unique Set
	19.29 Class Uniqueness Constraint

	20 SMIF Conceptual Model::Situations
	20.1 Diagram: Situations
	20.2 Class Actual Situation <<Intersection>>
	20.3 Class Situation
	20.4 Class Situation Type

	21 SMIF Conceptual Model::Top level
	21.1 Diagram: Top Level
	21.2 Class Actual Entity
	21.3 Association Assertion
	21.4 Class Context
	21.5 Association Extent of Context
	21.6 Class Identifiable Entity
	21.7 Association Negation
	21.8 Class Proposition
	21.9 Class Temporal Entity
	21.10 Class Thing

	22 SMIF Conceptual Model::Types
	22.1 Diagram: Type-instance
	22.2 Diagram: Types
	22.3 Class Entity Type
	22.4 Association Extent of Type
	22.5 Class Intersection Type
	22.6 Class Type
	22.7 Class Union Type

	23 SMIF Conceptual Model::Values
	23.1 Diagram: Values
	23.2 Class Base Unit Type
	23.3 Class Quantity kind
	23.4 Association Referenced System of Units
	23.5 Class Scalar Quantity <<Value>>
	23.6 Class Structured Value <<Value>>
	23.7 Class Structured Value Type
	23.8 Class System of Units
	23.9 Class Unit Type
	23.10 Class Unit Value <<Value>>
	23.11 Class Value
	23.12 Class Value Type

	7 SMIF UML Profile (Normative)
	7.1 Concept Modeling Profile Semantics
	7.1.1 Classes
	7.1.2 Instances
	7.1.3 Class Generalization
	7.1.3.1 Overlapping and Incomplete Subclasses
	7.1.3.2 Disjoint and Incomplete Subclasses
	7.1.3.3 Complete and Overlapping Subclasses
	7.1.3.4 Disjoint and Complete Subclasses

	7.1.4 Properties
	7.1.5 Associations
	7.1.6 Property and association end hierarchies
	7.1.7 Association Classes
	7.1.8 Annotation
	7.1.9 Specific kinds of classes
	7.1.9.1 Anything
	7.1.9.2 Union
	7.1.9.3 Intersection
	7.1.9.4 Facets, Roles, Phases and <<Facet Of>>
	7.1.9.5 Roles
	7.1.9.6 Quantity kinds and units

	7.1.10 Assertions about concepts
	7.1.10.1 Property Ownership
	7.1.10.2 Cardinality

	7.1.11 Constraining properties and associations
	7.1.12 Tightening a property’s type
	7.1.13 Inferring a type from its properties
	7.1.14 Property Chain
	7.1.15 Equivalent Property
	7.1.16 Equivalent Class

	7.2 SMIF Profile::SMIF Concept Modeling Profile Reference
	7.2.1 Diagram SMIF Conceptual Modeling Profile
	7.2.2 Stereotype Annotation
	7.2.3 1.2.3 Stereotype Annotation Property
	7.2.4 1.2.4 Stereotype Anything
	7.2.5 Stereotype Base Unit Value
	7.2.6 Stereotype Category
	7.2.7 Stereotype Characteristic
	7.2.8 Stereotype Concept Model
	7.2.9 Stereotype Disjoint With
	7.2.10 Stereotype Enumerates
	7.2.11 Stereotype Equivalent Class
	7.2.12 Stereotype Equivalent Property
	7.2.13 1.2.13 Stereotype External Reference
	7.2.14 Stereotype Has Value
	7.2.15 Stereotype Information Model[CC52]
	7.2.16 Stereotype Intersection
	7.2.17 Stereotype Involves
	7.2.18 Stereotype Is In Context
	7.2.19 Stereotype Model[CC53]
	7.2.20 Stereotype Phase
	7.2.21 Stereotype Quantity Kind
	7.2.22 Stereotype Relationship
	7.2.23 Stereotype Resource
	7.2.24 Stereotype Sufficient
	7.2.25 Stereotype Synonym
	7.2.26 Stereotype Union
	7.2.27 Stereotype Unit Value
	7.2.28 Stereotype Value

	7.3 UML Profile – SMIF Patterns & Model Mapping Profile
	7.3.1 Structure of Rule Specifications
	7.3.2 Rule Model
	7.3.3 Representations
	7.3.4 Mapping Rules
	7.3.5 <<Select>> Variables
	7.3.6 Multiplicity constraints in patterns
	7.3.7 Subsets of Pattern Variables
	7.3.8 <<Pattern Variable>> computations and constraints
	7.3.9 <<Pattern Variable>> explicit
	7.3.10 Pattern Precedence
	7.3.11 Generic Rules
	7.3.12 Facades and Representation Computations

	7.4 SMIF Profile::SMIF Patterns Profile Reference
	7.4.1 Diagram SMIF Patterns Profile
	7.4.2 Stereotype Excludes
	7.4.3 Stereotype Facade
	7.4.4 Stereotype Match
	7.4.5 Stereotype Mapping Rule
	7.4.6 Stereotype Select
	7.4.7 Stereotype Pattern Variable
	7.4.8 Enumeration Variable Qualification
	7.4.8.1 Literals

	7.4.9 Stereotype Represents
	7.4.10 Stereotype Pattern Rule
	7.4.11 Stereotype Rule Model
	7.4.12 Stereotype Subsets
	7.4.13 Stereotype Subsumes

	7.5 SMIF Profile::SMIF Computation Rules
	7.5.1 Diagram SMIF Computation Rules
	7.5.2 Class ExistsRule
	7.5.3 Class List First
	7.5.4 Class MapID
	7.5.5 Class Rule Computation
	7.5.6 Class Summarize

	7.6 Profile mapping to SMIF Model (Normative)
	7.6.1 SMIFProfileToModelMapping::High level representation
	7.6.1.1 Diagram: Anything
	7.6.1.2 Diagram: Classes
	7.6.1.3 Diagram: Lexical Structure
	7.6.1.4 Diagram: Patterns
	7.6.1.5 Diagram: Relationships
	7.6.1.6 Diagram: Rules
	7.6.1.7 Diagram: Types
	7.6.1.8 Diagram: Values

	7.6.2 SMIFProfileToModelMapping::Mapping rules
	7.6.3 Class Annotation value mapping
	7.6.4 Class Association mapping
	7.6.5 Class Class mapping
	7.6.6 Class Class property mapping
	7.6.7 Class Containment mapping
	7.6.8 Class Enumeration mapping
	7.6.9 Class Equivalent property chain mapping
	7.6.10 Class Equivalent property mapping
	7.6.11 Class Equivalent with mapping
	7.6.12 Class Generalization mapping
	7.6.13 Class Generalization set covering mapping
	7.6.14 Class Generalization set disjoint mapping
	7.6.15 Class Is in context mapping
	7.6.16 Class Mapping rule mapping
	7.6.17 Class Named element Mapping
	7.6.18 Class Pattern property mapping
	7.6.19 Class Property hierarchy mapping
	7.6.20 Class Synonym mapping

	8 SMIF Mapping to OWL 2 (normative)
	8.1 Class
	8.2 Class Generalization
	8.3 Class with Datatype Property
	8.4 Class with Self-Referential Object Property
	8.5 Class with Object Property
	8.6 <<Anything>> with Datatype Property
	8.7 <<Anything>>with Self-Referential Object Property
	8.8 <<Anything>> with Object Property
	8.9 Class with Object Property without Range
	8.10 Class with Subproperty
	8.11 Class with Universal Quantification Constraint on Property I
	8.12 Class with Universal Quantification Constraint on Property II
	8.13 Class with Existential Quantification Constraint on Property
	8.14 <<Anything>> with Self-Referential Subproperty
	8.15 <<Anything>> Holder with Subproperty
	8.16 Class with Subproperty without a Range
	8.17 Class with Necessary and Sufficient Property
	8.18 Class With Property Having Unspecified Multiplicity

